Thermal simulation analysis and optimization design of miniaturized traveling wave tube amplifier
-
摘要: 介绍了小型化行波管放大器的热仿真分析和优化设计方法。首先对行波管放大器的热损耗进行了分析,然后依据热力学相关理论,基于Ansys Icepak软件,对行波管放大器进行了建模和仿真分析。针对小型化行波管放大器的特点,分别进行了水冷板的热优化设计和慢波结构的热优化设计,在此基础上进行了水冷板和慢波结构的综合优化设计。最后进行了实验验证,实验结果与仿真结果相符,行波管放大器无论是整体温度还是局部温度分布特性,均得到了明显改善。Abstract: This paper introduces the thermal simulation analysis and optimization design method of the miniaturized traveling wave tube (TWT) amplifier. Firstly, the thermal loss of TWT is analyzed. Then, based on the thermodynamic theory and ANSYS Icepak software, the TWT amplifier is modeled and simulated. According to the characteristics of the miniaturized TWT, the thermal optimization design of the water-cooled plate and the slow-wave structure are carried out respectively. On this basis, the comprehensive optimization design of the water-cooled plate and the slow-wave structure is carried out. Finally, the experimental verification is excuted. The experimental results are in agreement with the simulation results. The overall and local temperature distribution characteristics of the TWT amplifier have been significantly improved.
-
表 1 行波管放大器各部件名称及材料
Table 1. Names and materials of components of TWT amplifier
name material name material electron gun kovar isolator oxygen-free copper high frequency iron preamplifier copper collector oxygen-free copper amplifier input waveguide oxygen-free copper TWT output waveguide oxygen-free copper、kovar amplifier output waveguide oxygen-free copper TWT input waveguide oxygen-free copper、kovar bottom plate aluminium 表 2 行波管放大器供电参数
Table 2. Power supply parameters of TWT amplifier
voltage/V current/mA power/W collector 4250 75 318.75 filament 6 0.62 3.72 slow-wave structure 16300 1 16.3 amplifier 8 500 4 表 3 边界条件
Table 3. Boundary conditions
boundary condition parameter setting ambient temperature 25 ℃ gravity direction Y-axis negative direction solution type radiation, conduction, convection turbulence model zero equation radiation model Ray Tracing -
[1] 娄继琳. 大功率真空电子器件内部温度推算及测量技术[D]. 南京: 东南大学, 2017.Lou Jilin. Internal temperature prediction and measurement of high power vacuum electronic devices. Nanjing: Southeast University, 2017 [2] 陈志强, 杨金生, 黎深根. 一体化均热板在行波管功率放大器热设计中的应用[J]. 真空电子技术, 2016(1): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201601018.htmChen Zhiqiang, Yang Jinsheng, Li Shen'gen. Application of integrated vapor chamber in thermal design of TWT power amplifiers. Vacuum Electronics, 2016(1): 64-66 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201601018.htm [3] Srikrishna P, Chanakya T, Venkateswaran R, et al. Thermal analysis of high-average power helix traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2018, 99: 1-9. [4] Xie Peng, Xu Li, Hao Jie, et al. Thermal analysis of TWT collector using finite element method[C]//IEEE International Vacuum Electronics Conference (IVEC). 2015. [5] 赵卉. 螺旋线行波管慢波结构的热分析研究[D]. 成都: 电子科技大学, 2016.Zhao Hui. Thermal analysis of slow wave structure of helix traveling wave tube. Chengdu: University of Electronic Science and Technology of China, 2016 [6] 李鑫伟, 尚新文, 刘韦, 等. 星载行波管高效率、高可靠阴极热子组件研究[J]. 真空科学与技术学报, 2015, 35(6): 737-743. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201506017.htmLi Xinwei, Shang Xinwen, Liu Wei, et al. Simulation of thermal and mechanical behavior of cathode-heater assembly of spaceborne traveling wave tube. Chinese Journal of Vacuum Science and Technology, 2015, 35(6): 737-743 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201506017.htm [7] 赵健翔. 螺旋线行波管的热力电协同仿真研究[D]. 成都: 电子科技大学, 2018.Zhao Jianxiang. Co-simulation study on thermal, stress and electric characteristics of helix traveling wave tube. Chengdu: University of Electronic Science and Technology, 2018 [8] 陆麒如, 张琳. 大功率毫米波螺旋线行波管慢波系统热分析[J]. 真空电子技术, 2019(3): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201903012.htmLu Qiru, Zhang Lin. Thermal analysis of slow wave structures for high power millimeter helix TWTs. Vaccuum Electronics, 2019(3): 46-50 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDJ201903012.htm [9] 赵健翔. 螺旋线行波管的热力电协同仿真研究[D]. 成都: 电子科技大学, 2018.Zhao Jianxiang. Co-simulation study on thermal, stress and electric characteristics of helix traveling wave tube. Chengdu: University of Electronic Science and Technology, 2018 [10] Xu Shouxi, Hou Xiaowan, Wang Zhandong, et al. Thermal analysis of electron gun for W-band gyro-traveling-wave amplifier[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 275-283.