留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚龙一号装置的强电磁干扰对PDV的影响研究

王贵林 张朝辉 孙奇志 杨雯捷 计策 丰树平

王贵林, 张朝辉, 孙奇志, 等. 聚龙一号装置的强电磁干扰对PDV的影响研究[J]. 强激光与粒子束, 2019, 31: 103217. doi: 10.11884/HPLPB201931.190186
引用本文: 王贵林, 张朝辉, 孙奇志, 等. 聚龙一号装置的强电磁干扰对PDV的影响研究[J]. 强激光与粒子束, 2019, 31: 103217. doi: 10.11884/HPLPB201931.190186
Wang Guilin, Zhang Zhaohui, Sun Qizi, et al. Study on effect of strong electromagnetic interference of PTS facility on photonic Doppler velocimetry[J]. High Power Laser and Particle Beams, 2019, 31: 103217. doi: 10.11884/HPLPB201931.190186
Citation: Wang Guilin, Zhang Zhaohui, Sun Qizi, et al. Study on effect of strong electromagnetic interference of PTS facility on photonic Doppler velocimetry[J]. High Power Laser and Particle Beams, 2019, 31: 103217. doi: 10.11884/HPLPB201931.190186

聚龙一号装置的强电磁干扰对PDV的影响研究

doi: 10.11884/HPLPB201931.190186
基金项目: 

国家自然科学基金青年基金项目 11502254

详细信息
    作者简介:

    王贵林(1987—), 男, 博士, 助理研究员, 材料超高压动力学特性研究; wangglzl@163.com

  • 中图分类号: O521.3;O436.1

Study on effect of strong electromagnetic interference of PTS facility on photonic Doppler velocimetry

  • 摘要: 光子多普勒测速系统(PDV)常采用全光纤模式, 操作方便, 已成为材料超高压动态实验获取动力学特性的重要诊断技术。测速范围和精度与光电传感器和数据采集仪器有关, 激光到达靶面后返回光电转换器, 速度由多普勒引起的频率变化直接解读。聚龙一号装置是开展材料动态实验的重要平台, 放电电流峰值5~8MA, 0~100%上升时间300~750ns。在装置放电过程中, 靶室和大厅中的强电磁干扰可以达到10~300MHz, 当干扰耦合进返回光信号后, 导致速度剖面解读困难。采用聚四氟乙烯绝缘膜和导电铝膜包覆测速探针很好地抑制了强电磁干扰信号对光信号的干扰, 大大提高了速度测量数据的有效性。
  • 图  1  材料动力学特性实验的速度测量和分析方法

    Figure  1.  Velocity measurement and analysis for magnetically driven dynamic material experiments

    图  2  高电流密度传输实验中同时测量速度和光强

    Figure  2.  Velocity and intensity measurement principle of high density current transmission experiments

    图  3  聚龙一号装置结构及测速系统可能的受扰部分

    Figure  3.  Structure of PTS facility and potential different interferential parts of velocimeter

    图  4  探针尾部包覆结构

    Figure  4.  Probes tail shielding structure

    图  5  PDV速度信号频谱图

    Figure  5.  Spectra of PDV velocity signal

  • [1] Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J]. Rev Sci Instrum, 2001, 72(9): 3587-3595. doi: 10.1063/1.1394178
    [2] 马云, 胡绍楼, 汪小松, 等. 样品-窗口界面运动速度的VISAR测试技术[J]. 高压物理学报, 2003, 17(4): 290-294. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200304008.htm

    Ma Yun, Hu Shaolou, Wang Xiaosong, et al. VISAR measurement on interface velocity between shocked specimen and window. Chinese Journal of High Pressure Physics, 2003, 17(4): 290-294 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL200304008.htm
    [3] Weng J D, Wang X, Tao T J, et al. Optic microwave mixing velocimeter for super high velocity measurement[J]. Rev Sci Instrum, 2011, 82: 123114. doi: 10.1063/1.3670403
    [4] Dolan D H. Accuracy and precision in photonic Doppler velocimetry[J]. Rev Sci Instrum, 2010, 81: 053905. doi: 10.1063/1.3429257
    [5] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter Radiat Extreme, 2016, 1: 48-58. doi: 10.1016/j.mre.2016.01.004
    [6] 夏明鹤, 计策, 王玉娟, 等. PTS装置工作模式及波形调节[J]. 强激光与粒子束, 2012, 24(11): 2768-2772. doi: 10.3788/HPLPB20122411.2768

    Xia Minghe, Ji Ce, Wang Yujuan, et al. Current pulse shaping of load on Primary Test Stand facility. High Power Laser and Particle Beams, 2012, 24(11): 2768-2772 doi: 10.3788/HPLPB20122411.2768
    [7] 郭帆, 王贵林, 邹文康, 等. 聚龙一号装置磁驱动加载实验的全电路模拟[J]. 强激光与粒子束, 2018, 30: 125001. doi: 10.11884/HPLPB201830.180239

    Guo Fan, Wang Guilin, Zou Wenkang, et al. Full circuit calculation of magnetically driven experiment on PTS facility. High Power Laser and Particle Beams, 2018, 30: 125001 doi: 10.11884/HPLPB201830.180239
    [8] 王贵林, 王治, 张朝辉, 等. 磁驱动准等熵下单晶氟化锂的光学特性[J]. 强激光与粒子束, 2014, 26: 045030. doi: 10.11884/HPLPB201426.045030

    Wang Guilin, Wang Zhi, Zhang Zhaohui, et al. Optical properties of single-crystal lithium fluoride window under magnetically driven quasi-isentropic compression. High Power Laser and Particle Beams, 2014, 26: 045030 doi: 10.11884/HPLPB201426.045030
    [9] Martin M R, Lemeke R W, McBride R D, et al. Solid liner implosions on Z for producing multi-megabar, shockless compression[J]. Physics of Plasmas, 2012, 19: 056310. doi: 10.1063/1.3694519
    [10] Zou Wenkang, Dan Jiakun, Wang Guilin, et al. Investigation of surface evolution for stainless steel electrode under pulsed megagauss magnetic field[J]. Physics of Plasmas, 2018, 25: 022120. doi: 10.1063/1.5016978
    [11] 段书超, 谢卫平, 王刚华, 等. 完全稳定化MRT的可能性及应用于聚变的潜力[J]. 强激光与粒子束, 2018, 30: 020101. doi: 10.11884/HPLPB201830.170454

    Duan Shuchao, Xie Weiping, Wang Ganghua, et al. Possibility of complete stabilization of magneto-Rayleigh-Taylor instabilities and potential for fusion. High Power Laser and Particle Beams, 2018, 30: 020101 doi: 10.11884/HPLPB201830.170454
  • 加载中
图(5)
计量
  • 文章访问数:  1145
  • HTML全文浏览量:  280
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24
  • 修回日期:  2019-08-28
  • 刊出日期:  2019-10-15

目录

    /

    返回文章
    返回