Electromagnetic resilience of critical national infrastructure
-
摘要: 随着国家关键基础设施建设规模和信息化水平的提升,其在高空电磁脉冲、有意电磁干扰和地磁暴等强电磁环境下的电磁安全逐渐受到了国内外的关注。强电磁环境属于小概率、高风险事件,其影响机理和评估方法与雷电、系统内过电压等常规电磁事件有较大不同,采用期望风险指标的常规可靠性分析方法难以有效评估管理强电磁环境相关风险。从电磁恢复力视角出发,提出了关键基础设施电磁安全的三棱锥模型,并重点以电网为例,探讨关键基础设施电磁恢复力的内涵和外延,并对开展电磁恢复力研究提出建议。Abstract: With the increase in the system scale and informatization level of the critical national infrastructures, the electromagnetic security in extreme electromagnetic environments such as the high-altitude electromagnetic pulse, the intentional electromagnetic interference and the geomagnetic storm has attracted more attention. Unlike conventional electromagnetic events such as the lightning and the overvoltage in power systems, extreme electromagnetic environments are small-probability but high-risk events whose impact mechanisms and evaluation methods are quite different. And the conventional reliability analysis, which adopts the expected value indexes, is difficult to effectively evaluate and manage the risks related to extreme electromagnetic environments. In this context, this paper presents a triangular pyramid model for the study of electromagnetic security of critical infrastructures. Then taking the power grid as an example, it discusses the implication and significance of electromagnetic resilience to critical infrastructures, and finally makes a proposal for the future study of electromagnetic resilience.
-
表 1 典型强电磁环境的特性对比
Table 1. Comparison of characteristics of typical extreme electromagnetic environment
EM threat main frequency range amplitude main vulnerable equipment in power grids and its effect phenomena radius of influence HEMP 0.1~100 MHz(E1)
100 kHz below(E2)
0.1 mHz ~1 Hz(E3)50 kV/m(E1)
10~100 V/m(E2)
30~85 V/km(E3)disturbance or damage to the generator control system, insulation problems at the winding ends of transformers & reactors, DC biasing of high voltage transformers, fault of SCADA system in power grid, incorrect operation of relay protection, flashover of distribution insulators and failure of distribution transformers, etc. hundreds of kilometers~ thousands of kilometers IEMI 300MHz~tens of GHz dozens of kV/m~ hundreds of kV/m failure of secondary equipment such as power grid SCADA and relay protection system several meters~ tens of kilometers GMD 0.1 mHz~0.1 Hz 1~10 V/km DC biasing of high voltage transformers hundreds of kilometers~ thousands of kilometers -
[1] FosterJ S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack, Volume 1: Executive report[R]. 2004. [2] Foster J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) Attack: Critical national infrastructures[R]. 2008. [3] Graham W R, Foster J S, Gjelde E, et al. Assessing the threat from electromagnetic pulse (EMP): Executive report[R]. 2017. [4] North American Electric Reliability Corporation (NERC) and the U. S. Department of Energy. High-impact, low-frequency event risk to the North American bulk power system[R]. 2010. [5] U. S. Department of Energy and the Electric Power Research Institute. Joint electromagnetic pulse resilience strategy[R]. 2016. [6] U. S. Department of Energy. U. S. Department of Energy electromagnetic pulse resilience action plan[R]. 2017. [7] Horton R. High-altitude electromagnetic pulse and the bulk power system: Potential impacts and mitigation strategies[R]. Electric Power Research Institute, 2019. [8] The White House. Executive order on coordinating national resilience to electromagnetic pulses[EB/OL]. https://www.whitehouse.gov/presidential-actions/executive-order-coordinating-national-resilience-electromagnetic-pulses/. [9] Arnesen O, Hoad R. Overview of the European project 'HIPOW'[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 64-67. [10] Deniau V. Overview of the European project security of railways in Europe against electromagnetic attacks (SECRET)[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 80-85. doi: 10.1109/MEMC.2014.7023203 [11] Stefan V D B, Dawson J, Flintoft I, et al. Overview of the European project STRUCTURES[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(4): 70-79. doi: 10.1109/MEMC.2014.7023202 [12] 祁国成, 李科杰, 李亚峰, 等. 油气管道数据采集与监视控制系统电磁脉冲效应实验[J]. 强激光与粒子束, 2015, 27: 123202. doi: 10.11884/HPLPB201527.123202Qi Guocheng, Li Kejie, Li Yafeng, et al. Experimental study on effects of electromagnetic pulse on pipeline supervisory control and data acquisition(SCADA) system. High Power Laser and Particle Beams, 2015, 27: 123202 doi: 10.11884/HPLPB201527.123202 [13] 黄忠胜, 陈宇浩, 杨明, 等. 基于贝叶斯方法的设备级电磁脉冲效应评估[J]. 强激光与粒子束, 2015, 27: 125002. doi: 10.11884/HPLPB201527.125002Huang Zhongsheng, Chen Yuhao, Yang Ming, et al. Effect assessment of electromagnetic pulse at equipment level based on Bayesian method. High Power Laser and Particle Beams, 2015, 27: 125002 doi: 10.11884/HPLPB201527.125002 [14] 束国刚, 杜子韦华, 黄玮, 等. 核电站最小安全系统电磁脉冲效应试验研究[J]. 强激光与粒子束, 2018, 30: 103203. doi: 10.11884/HPLPB201830.180115Shu Guogang, Du Ziweihua, Huang Wei, et al. Experiment research on electromagnetic effects of minimum safety system in nuclear power plant. High Power Laser and Particle Beams, 2018, 30: 103203 doi: 10.11884/HPLPB201830.180115 [15] 国家能源局. 电力行业应急能力建设行动计划(2018-2020)[EB/OL].National Energy Administration. Plan of action for emergency capacity construction in the electric power sector(2018-2020). http://zfxxgk.nea.gov.cn/auto93/201808/t20180807_3222.htm [16] 谢彦召, 王赞基, 王群书, 等. 高空核爆电磁脉冲波形标准及特征分析[J]. 强激光与粒子束, 2003, 15(8): 781-787. http://www.hplpb.com.cn/article/id/30Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. High altitude nuclear electromagnetic pulse waveform standards: a review. High Power Laser and Particle Beams, 2003, 15(8): 781-787 http://www.hplpb.com.cn/article/id/30 [17] IEC61000-2-9, Electromagnetic compatibility (EMC)—Part 2: Environment—Section 9: Description of HEMP environment—Radiated disturbance[S]. [18] Giri D V, Tesche F M. Classification of intentional electromagnetic environments (IEME)[J]. IEEE Trans Electromagnetic Compatibility, 2004, 46(3): 322-328. doi: 10.1109/TEMC.2004.831819 [19] IEEE Power & Energy Society Technical Council Task Force on Geomagnetic Disturbances. Geomagnetic disturbances: their impact on the power grid[J]. IEEE Power & Energy Magazine, 2013, 11(4): 71-78. [20] Boteler D H, Pirjola R J. Modeling geomagnetically induced currents[J]. Space Weather, 2017, 15(1): 258-276. doi: 10.1002/2016SW001499 [21] Shetye K, Overbye T. Modeling and analysis of GMD effects on power systems: an overview of the impact on large-scale power systems[J]. IEEE Electrification Magazine, 2015, 3(4): 13-21. doi: 10.1109/MELE.2015.2480356 [22] 刘连光. 大规模电网应对空间灾害天气的问题[J]. 电网技术, 2010, 34(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201006003.htmLiu Lianguang. Scientific issues on how to cope with damage in large-scale power grid caused by disastrous space weather. Power System Technology, 2010, 34(6): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201006003.htm [23] 薛禹胜, 谢云云, 文福拴, 等. 关于电力系统相继故障研究的评述[J]. 电力系统自动化, 2013, 37(19): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201319001.htmXue Yusheng, Xie Yunyun, Wen Fushuan, et al. A review on cascading failures in power system. Automation of Electric Power Systems, 2013, 37(19): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201319001.htm [24] 乔登江. 高功率电磁脉冲、强电磁效应、电磁兼容、电磁易损性及评估概论[J]. 现代应用物理, 2013, 4(03): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201303002.htmQiao Dengjiang. Introduction to HPEMP, IEME, EMC, and EM susceptibility and its assessment. Modern Applied Physics, 2013, 4(03): 219-224 https://www.cnki.com.cn/Article/CJFDTOTAL-YYWL201303002.htm [25] 刘尚合, 刘卫东. 电磁兼容与电磁防护相关研究进展[J]. 高电压技术, 2014(6): 1605-1613. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201406002.htmLiu Shanghe, Liu Weidong. Progress of relevant research on electromagnetic compatibility and electromagnetic protection. High Voltage Engineering, 2014(6): 1605-1613 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201406002.htm [26] BakerG H. Risk-based national infrastructure protection priorities for EMP and solar storms[R]. 2017. [27] Genender E, Garbe H, Sabath F. Probabilistic risk analysis technique of intentional electromagnetic interference at system level[J]. IEEE Trans Electromagnetic Compatibility, 2014, 56(1): 200-207. [28] Ängskog P, Näsman P, Mattsson L G. Resilience to intentional electromagnetic interference is required for connected autonomous vehicles[J]. IEEE Trans Electromagnetic Compatibility, to be published. [29] Oakes B D, Mattsson L G, Näsman P, et al. A systems-based risk assessment framework for intentional electromagnetic interference (IEMI) on critical infrastructures[J]. Risk Analysis, 2018, 38(6): 1279-1305. [30] 别朝红, 林雁翎, 邱爱慈. 弹性电网及其恢复力的基本概念与研究展望[J]. 电力系统自动化, 2015, 39(22): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201522001.htmBie Zhaohong, Lin Yanling, Qiu Aici. Concept and research prospects of power system resilience. Automation of Electric Power Systems, 2015, 39(22): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201522001.htm [31] Wang Y, Chen C, Wang J, et al. Research on resilience of power systems under natural disasters—A review[J]. IEEE Trans Power Systems, 2016, 31(2): 1604-1613. [32] Thomson A W P, Dawson E B, Reay S J. Quantifying extreme behavior in geomagnetic activity[J]. Space Weather, 2011, 9(10). [33] 李立浧, 饶宏, 董旭柱, 等. 计算高电压工程学的思考与展望[J]. 高电压技术, 2018, 44(11): 3441-3453. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201811001.htmLi Licheng, Rao Hong, Dong Xuzhu, et al. Prospect of computational high voltage engineering. High Voltage Engineering, 2018, 44(11): 3441-3453 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201811001.htm [34] Nyffeler M, Kaelin A W. EMP-hardened photovoltaic generators: a possible emergency power solution for critical infrastructure?[R]. System Design and Assessment NOTE 47, 2016. [35] Savage E, Gilbert J, Radasky W. The early-time (E1) high-altitude electromagnetic pulse (HEMP) and its impact on the US power grid[R]. Meta-R-320, 2010. [36] Minteer T, Mooney T, Artz S, et al. Understanding design, installation, and testing methods that promote substation IED resiliency for high-altitude electromagnetic pulse events[C]//2017 70th Annual Conference for Protective Relay Engineers (CPRE). 2017: 1-18. [37] Parfenov Y V, Zdoukhov L N, Shurupov A V, et al. Research of flashover of power line insulators due to high-voltage pulses with power on and power off[J]. IEEE Trans Electromagnetic Compatibility, 2013, 55(3): 467-474. [38] Wang X, Xie S, Wang X, et al. Decision-making model based on conditional risks and conditional costs in power system probabilistic planning[J]. IEEE Trans Power Systems, 2013, 28(4): 4080-4088. [39] Panteli M, Trakas D N, Mancarella P, et al. Power systems resilience assessment: hardening and smart operational enhancement strategies[J]. Proceedings of the IEEE, 2017, 105(7): 1202- 1213. [40] Ji C, Wei Y, Poor H V. Resilience of energy infrastructure and services: Modeling, data analytics, and metrics[J]. Proceedings of the IEEE, 2017, 105(7): 1354-1366. [41] PJM manual 13: Emergency operations[EB/OL]. 2018. http://www.pjm.com//media/documents/manuals/m13.ashx.