留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高避雷针系统接闪效能的数值评估

万浩江 魏光辉 陈亚洲 潘晓东 卢新福

万浩江, 魏光辉, 陈亚洲, 等. 超高避雷针系统接闪效能的数值评估[J]. 强激光与粒子束, 2019, 31: 103205. doi: 10.11884/HPLPB201931.190204
引用本文: 万浩江, 魏光辉, 陈亚洲, 等. 超高避雷针系统接闪效能的数值评估[J]. 强激光与粒子束, 2019, 31: 103205. doi: 10.11884/HPLPB201931.190204
Wan Haojiang, Wei Guanghui, Chen Yazhou, et al. Numerical evaluation of interception performance for ultra-high lightning rod system[J]. High Power Laser and Particle Beams, 2019, 31: 103205. doi: 10.11884/HPLPB201931.190204
Citation: Wan Haojiang, Wei Guanghui, Chen Yazhou, et al. Numerical evaluation of interception performance for ultra-high lightning rod system[J]. High Power Laser and Particle Beams, 2019, 31: 103205. doi: 10.11884/HPLPB201931.190204

超高避雷针系统接闪效能的数值评估

doi: 10.11884/HPLPB201931.190204
基金项目: 

国家自然科学基金项目 51707203

电磁环境效应国家级重点实验室基金项目 6142205030103

详细信息
    作者简介:

    万浩江(1983—), 男,博士,讲师,从事雷电防护理论与技术研究; hbwhj1983@163.com

  • 中图分类号: P427

Numerical evaluation of interception performance for ultra-high lightning rod system

  • 摘要: 针对目前超高避雷针系统日趋增多但现行标准又难以对其整体接闪效能进行有效评价的现状,基于亚网格技术发展了一种地物装置接闪效能数值评估方法,建立了超高避雷针系统接闪效能的数值评估模型,并对典型超高避雷针系统的接闪效能进行了数值评估实验,结果表明:超高避雷针系统接闪器顶端接闪概率最大,但其上部其他区域也可能遭受雷电的侧击,且接闪器上部遭受侧击的概率会随着侧击点高度的增加而增大。此外,雷击强度或雷云荷电强度对超高避雷针系统接闪器上各部分的接闪概率也有影响。雷击强度或雷云荷电强度越小,接闪器顶端的接闪概率越低,相应地接闪器上遭受侧击的概率越大,且侧击点的覆盖范围也会随之逐渐向接闪器的下部扩展。
  • 图  1  数值评估的流程图

    Figure  1.  Flow chart of the numerical evaluation

    图  2  超高避雷针系统评估对象设置

    Figure  2.  Evaluation settings for the ultra-high lightning rod systems

    图  3  典型的雷暴云多层荷电结构及其中心轴线上的电场和电势分布

    Figure  3.  A typical representation of the multi-layered charge structure and corresponding electric field (Eax) and potential (Uax) vertical distributions

    图  4  超高避雷针系统接闪效能的一个有效评估样本

    Figure  4.  An effective evaluation sample for the interception performance of the ultra-high lightning rod systems

    图  5  避雷针系统和防护对象上的雷击点分布情况(|ρ|=0.65 nC/m3)

    Figure  5.  Distribution of lightning strike points in lightning rod systems and protective object (|ρ|=0.65 nC/m3)

    图  6  超高避雷针系统接闪器不同高度位置上的闪击概率

    Figure  6.  Interception probability of the air-termination systems at different heights for the ultra-high lightning rod systems

    图  7  不同雷云强度下超高避雷针系统和防护对象上的雷击点分布

    Figure  7.  Distributions of lightning strike points in ultra-high lightning rod systems and protective object at different thundercloud intensities

    图  8  不同雷云强度下超高避雷针系统接闪器不同高度位置上的闪击概率

    Figure  8.  Interception probability of the air-termination systems at different heights for the ultra-high lightning rod systems at different thundercloud intensities

    表  1  雷暴云的模型参数

    Table  1.   Parameters of the thundercloud model

    number of layers i ρi/(nC·m-3) hUi/m hLi/m ri/m
    1 -0.65 10 000 9200 5000
    2 0.65 8900 6000 5000
    3 -0.65 5500 2600 5000
    4 0.65 2500 2000 1500
    下载: 导出CSV
  • [1] IEC 62305-1, Protection against lightning, Part 1: General principles[S].
    [2] GB 50057-2010, 建筑物防雷设计规范[S].

    GB 50057-2010, Code for design protection of structures against lightning
    [3] DL/T 620-1997, 交流电气装置的过电压保护和绝缘配合[S].

    DL/T 620-1997, Overvoltage protection and insulation coordination for AC electrical installations
    [4] 刘蜀岷. 避雷针保护范围不能"绝对化"[J]. 高电压技术, 2005, 31(7): 82-83. doi: 10.3969/j.issn.1003-6520.2005.07.030

    Liu Shumin. Avoiding absolutization of protection range of lightning rods. High Voltage Engineering, 2005, 31(7): 82-83 doi: 10.3969/j.issn.1003-6520.2005.07.030
    [5] 周萍, 吕英华, 陈志红, 等. 航天系统雷电防护技术发展综述及展望[J]. 宇航学报, 2018, 39(8): 827-837. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201808001.htm

    Zhou Ping, Lü Yinghua, Chen Zhihong, et al. Review and prospect of lightning protection technology for an astronautic system. Journal of Astronautics, 2018, 39(8): 827-837 https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201808001.htm
    [6] 曾嵘, 周旋, 王泽众, 等. 国际防雷研究进展及前沿述评[J]. 高电压技术, 2015, 41(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201501001.htm

    Zeng Rong, Zhou Xuan, Wang Zezhong, et al. Review of research advances and fronts on international lightning and protection. High Voltage Engineering, 2015, 41(1): 1-13 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201501001.htm
    [7] Niemeyer L, Pietronero L, Wiesmann H J. Fractal dimension of dielectric breakdown[J]. Physical Review Letters, 1984, 52(12): 1033-1036. doi: 10.1103/PhysRevLett.52.1033
    [8] Petrov N I, Petrova G N, D'Alessandro F. Quantification of the probability of lightning strikes to structures using a fractal approach[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10: 641-654. doi: 10.1109/TDEI.2003.1219649
    [9] 邵程远. 建筑物雷击概率特性研究[D]. 南京: 南京信息工程大学, 2011: 20-36.

    Shao Chengyuan. Research on the probability characteristics of lightning strikes in buildings. Nanjing: Nanjing University of Information Science & Technology, 2011: 20-36
    [10] Zhang Xuewei, Dong Lin, He Jinliang, et al. Study on the effectiveness of single lightning rods by a fractal approach[J]. Journal of Lightning Research, 2009, 1: 1-8. doi: 10.2174/1652803400901010001
    [11] 裴高飞, 陈海林, 高成. 基于先导发展模型的舰艇避雷防护评估仿真[J]. 强激光与粒子束, 2018, 30: 013202. doi: 10.11884/HPLPB201830.170193

    Pei Gaofei, Chen Hailin, Gao Cheng. Lightning protection evaluation technology of surface ship based on leader progression model. High Power Laser and Particle Beams, 2018, 30: 013202 doi: 10.11884/HPLPB201830.170193
    [12] 陈强, 魏光辉, 陈亚洲, 等. 3维电介质击穿模型在雷电防护系统评估试验中的应用[J]. 强激光与粒子束, 2011, 23(3): 721-726. http://www.hplpb.com.cn/article/id/5087

    Chen Qiang, Wei Guanghui, Chen Yazhou, et al. Application of three-dimensional dielectric breakdown model to lightning protection system evaluation. High Power Laser and Particle Beams, 2011, 23(3): 721-726 http://www.hplpb.com.cn/article/id/5087
    [13] 万浩江, 魏光辉, 陈强, 等. 雷电先导放电的三维数值模拟与应用[J]. 高电压技术, 2013, 39(2): 430-436. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302026.htm

    Wan Haojiang, Wei Guanghui, Chen Qiang, et al. Three-dimensional numerical simulation of lightning discharge and its application. High Voltage Engineering, 2013, 39(2): 430-436 https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302026.htm
    [14] Wiesmann H J, Zeller H R. A fractal model of dielectric breakdown and prebreakdown in solid dielectries[J]. Journal of Applied Physics, 1986, 60(5): 1770-1773. doi: 10.1063/1.337219
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1126
  • HTML全文浏览量:  328
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 修回日期:  2019-07-06
  • 刊出日期:  2019-10-15

目录

    /

    返回文章
    返回