Analysis on the interference effect of electrostatic discharge of GNSS receiver on aircraft
-
摘要: 针对飞行器全球卫星导航系统接收机易受静电放电干扰的问题,研究了机体表面电晕放电与机务维修火花放电对接收机的干扰效应。分析了静电放电的时频域特征,使用针球电极与高压源组成的模拟器开展了电晕放电对接收机的前门耦合实验,证明了电晕脉冲产生的辐射场对接收机无明显干扰效应。基于人体金属ESD模型开展了火花放电对接收机的干扰效应实验,发现浪涌电流易导致接收机串口转换芯片电位波动,读写程序主循环卡死,应针对串口端进行静电阻抗器防护。Abstract: Aiming at the problem that the Global Navigation Satellite System (GNSS) receiver is susceptible to ESD, the interference effect of the corona discharge on the surface of the aircraft and ESD generated by maintenance on the receiver are studied. The time-frequency domain characteristics of the ESD is analyzed. The front door coupling experiment of corona discharge to the receiver was carried out using a simulator composed of a needle ball electrode and a high voltage source. It is proved that the radiation field generated by the corona pulse has no obvious interference effect on the receiver. Based on the human body metal ESD model, the experiment of the interference effect of spark discharge on the receiver was carried out. It was found that the surge current easily caused potential fluctuation of the serial port conversion chip of the receiver, and the main loop of the read/write program was stuck. ESD protection should be performed for the serial port.
-
Key words:
- GNSS receiver /
- electrostatic discharge /
- interference effect /
- human metal model /
- corona discharge
-
表 1 A、B、C、D四个面干扰电压临界值
Table 1. Thresholds of four face-interference-voltages of the receiver
discharge position air discharge
voltage (horizontal coupling plate)/kVair discharge
voltage (vertical coupling plate)/kVdirect contact discharge voltage/kV side A 26 28 6 side B 19 7 6 side C 15 22 5 side D 10 21 26 表 2 接收机各部位干扰电压临界值
Table 2. Intercept voltage threshold for each part of the receiver
discharge position as shown in fig. 11(b) direct contact discharge voltage/kV 1 no effect 2 19 3 8 4 4 5 11 -
[1] 李琳, 刘淳, 谭述森. 导航终端复杂电磁环境适应性指标体系探讨[J]. 导航定位学报, 2018, 6(1):1-4. (Li Lin, Liu Chun, Tan Shusen. Discussion on the adaptability index system of complex electromagnetic environment in navigation terminals. Journal of Navigation and Positioning, 2018, 6(1): 1-4 [2] 汪项伟, 万发雨, 冯超超, 等. 静电放电辐射场模拟及干扰预测[J]. 高电压技术, 2017, 43(10):3396-3402. (Wang Xiangwei, Wan Fayu, Feng Chaochao, et al. Electrostatic radiation field simulation and interference prediction. High Voltage Engineering, 2017, 43(10): 3396-3402 [3] 刘尚合, 魏光辉, 刘直承. 静电理论与防护[M]. 北京: 兵器工业出版社, 1999: 2-20.Liu Shanghe, Wei Guanghui, Liu Zhicheng. Electrostatic theory and protection. Beijing: Ordnance Industry Press, 1999: 2-20 [4] 杜照恒, 刘尚合, 魏明, 等. 飞行器静电起电与放电模型及仿真分析[J]. 高电压技术, 2014, 40(9):2806-2812. (Du Zhaoheng, Liu Shanghe, Wei Ming, et al. Model and simulation analysis of electrostatic electrification and discharge of aircraft. High Voltage Engineering, 2014, 40(9): 2806-2812 [5] 刘尚合, 杜照恒, 胡小锋, 等. 航空发动机尾气静电带电机理分析与试验研究[J]. 高电压技术, 2014, 40(9):2678-2684. (Liu Shanghe, Du Zhaoheng, Hu Xiaofeng, et al. Analysis and experimental research on electrostatic performance of aero engine exhaust gas. High Voltage Engineering, 2014, 40(9): 2678-2684 [6] 陆家榆, 何堃, 马晓倩, 等. 空中颗粒物对直流电晕放电影响研究现状: 颗粒物空间电荷效应[J]. 中国电机工程学报, 2015, 35(23):6222-6234. (Lu Jiayu, He Kun, Ma Xiaoqian, et al. Research status of effects of airborne particles on dc corona discharge: space charge effect of particulate matter. Proceedings of the CSEE, 2015, 35(23): 6222-6234 [7] Nayak S K, Thomas M J. An integro-differential equation technique for the computation of radiated EMI due to corona on HV power transmission lines[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 488-493. doi: 10.1109/TPWRD.2004.838644 [8] Lee J H, Iyer N M, Maloney T J. Physical model for ESD human body model to transmission line pulse[C]//2019 IEEE International Reliability Physics Symposium (IRPS). 2019: 1-7. [9] 徐晓英, 甘瑛洁, 浦实, 等. ESD防护器件HMM和TLP测试方法及性能评价[J]. 高电压技术, 2017, 43(4):1348-1353. (Xu Xiaoying, Gan Yingjie, Pu Shi, et al. Test methods and performance evaluation of ESD protection devices HMM and TLP. High Voltage Engineering, 2017, 43(4): 1348-1353 [10] Berghe S V D, Zutter D. Study of ESD signal entry through coaxial cable shields[J]. Journal of Electrostatic, 1998, 44: 135-148. doi: 10.1016/S0304-3886(98)00035-7 [11] 盛松林, 毕增军, 田明宏, 等. 一个新的IEC61000-4-2标准ESD电流解析表达式[J]. 强激光与粒子束, 2003, 15(5):464-466. (Sheng Songlin, Bi Zengjun, Tian Minghong, et al. A new analytical expression of current waveform in standard IEC61000-4-2. High Power Laser and Partice Beams, 2003, 15(5): 464-466 [12] Liou J J. Electrostatic discharge protection[M]. London: CRC Press: 2017-12-21. [13] 王俊涛. 人体ESD模拟器的研究[D]. 北京: 北京邮电大学, 2008.Wang Juntao. Research on human body ESD simulator. Beijing: Beijing University of Posts and Telecommunications, 2008 [14] 谢喜宁, 胡小锋. 一种静电放电模拟装置的设计[J]. 强激光与粒子束, 2019, 31:063205. (Xie Xining, Hu Xiaofeng. Design of an electrostatic discharge simulator. High Power Laser and Particle Beams, 2019, 31: 063205 [15] Lai H W, Chow M W K, Chan K Y. Calibration of electrostatic discharge (ESD) generator in accordance with IEC61000-4-2: 2008 at SCL[J]. NCSLI Measure, 2019: 1-9. doi: 10.1080/19315775.2018.1564404 [16] Rachmildha T D, Hamdani D, Mandaris D, et al. Implementation of IEC 61000-4-2 Standard Testing Under Tropical Humidity for Recommendation to Amendment of International Standards[C]//2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018: 1018-1023. [17] Shichao L, Xiaobing C, Fangming R, et al. Experiment and simulation analysis of BMM electrostatic discharge simulator[C]//2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). 2017: 1-4. [18] 孙凤杰, 邓建红. 电子学系统强电磁脉冲干扰场路结合仿真[J]. 强激光与粒子束, 2015, 27:124003. (Sun Fengjie, Deng Jianhong. Synthesis of strong electromagnetic pulse interference fields in electronics system. High Power Laser and Particle Beams, 2015, 27: 124003