Design of bremsstrahlung target of 4 MeV flash X-ray machine
-
摘要: 对4 MeV闪光X光机的轫致辐射靶参数进行了设计和模拟计算。利用蒙特卡罗程序,计算得到当轫致辐射靶的有效钽靶材厚度约为0.6 mm时,靶正前方1 m处产生的单脉冲X光的照射量值最大,可以达到约2.86×10-3 C/kg,满足4 MeV闪光X光机对其单脉冲X光的设计要求。对不同能量下的单脉冲电子束加载在轫致辐射靶上的能量沉积密度进行了计算和比较,分析研究了不同结构下的靶破坏,结果表明:轫致辐射靶采用叠靶结构的钽靶能够满足4 MeV闪光机的实验需求。Abstract: Bremsstrahlung converter target is one of the key factors for flash X-ray machine. The bremsstrahlung radiation process in which the electron beam impinges on the target is simulated utilizing the Monte Carlo method, by which the influence of the effective target thickness on the exposure is analyzed, the optimal target thickness and the exposure are also obtained for the 4 MeV flash X-ray machine. The damages of target impacted by the electron beam are compared and discussed for various electron energy deposit density from different sources, such as 12 MeV LIA, Dragon accelerators and 4 MeV flash X-ray machine. The results show that the tantalum distributed target may be the satisfactory solution for the bremsstrahlung target of 4 MeV flash X-ray machine.
-
Key words:
- bremsstrahlung /
- Monte Carlo /
- exposure /
- energy deposit /
- distributed target
-
表 1 照射量转换因子的能量依赖关系
Table 1. Exposure conversion factor change with photon energy
$h\nu $/MeV $\varepsilon $ /(J·m-2·R-1) 0.01 0.019 0.02 0.171 0.05 2.151 0.1 3.847 0.2 3.294 0.5 2.940 1 3.140 2 3.731 3 4.258 4 4.668 5 4.960 6 5.291 8 5.706 10 5.979 15 6.419 20 6.364 表 2 单脉冲电子束作用下靶正前方1 m处X光照射量比较
Table 2. Comparison of X ray exposure at 1 m just in front of the target impacted by the single pulse electron beam
methods W/MeV I/kA $\tau $/ns X/(C·kg-1) Martin formula 4 2.5 60 2.07×10-3 MCNP simulation 4 2.5 60 2.86×10-3 表 3 单脉冲电子束作用下不同轫致辐射靶的破坏比较
Table 3. Comparison of damage for different bremsstrahlung targets impacted by single pulse electron beam
W/MeV I/kA $\tau $/ns X-ray spot/mm D/(J·mm-2) target structure target destroyed 12 MeV LIA 12 2.5 80 3.2 298.6 slab melting ablation/perforation distributed no change Dragon-Ⅰ 20 2.0 60 1.5 1358.8 distributed perforation Dragon-Ⅱ 20 2.0 60 2 764.3 distributed perforation 4 MeV X-ray machine 4 2.0~2.5 60 2 152.9~191.1 distributed no transformation (estimated) -
[1] 马勋, 邓建军, 姜萍, 等. 流体动力学实验用闪光X光机研究进展[J]. 强激光与粒子束, 2014, 26:010201. (Ma Xun, Deng Jianjun, Jiang Ping, et al. Review of flash X-ray generator applied to hydrokinetical experiments. High Power Laser and Particle Beams, 2014, 26: 010201 [2] 叶雁, 李泽仁, 祁双喜, 等. 美国次临界实验中X光照相应用综述[J]. 高能量密度物理, 2009(4):177-181. (Ye Yan, Li Zeren, Qi Shuangxi, et al. Review of flash radiography applications in America subcritical experiments. High Energy Density Physics, 2009(4): 177-181 [3] 张奇. 闪光X射线技术在空间科学领域中的应用[J]. 环模技术, 1999(3):54-58. (Zhang Qi. The application of flash radiography to space science and technology. Environment Technique, 1999(3): 54-58 [4] 禹海军, 陈楠, 李劲, 等. 神龙一号轫致辐射靶设计[J]. 高能量密度物理, 2007, 3:93-96. (Yu Haijun, Chen Nan, Li Jin, et al. Design of bremsstrahlung target of Dragon-Ⅰ . High Energy Density Physics, 2007, 3: 93-96 [5] 刘军, 刘进, 施将君, 等. 闪光照相中FXRMC和MCNP4B的散射比较研究[J]. 强激光与粒子束, 2006, 18(6):1014-1018. (Liu Jun, Liu Jin, Shi Jiangjun, et al. Scattering comparison between FXRMC and MCNP in flash X-ray radiography. High Power Laser and Particle Beams, 2006, 18(6): 1014-1018 [6] 王毅, 李勤, 戴志勇. 蒙特卡罗模拟分析电子束发射度对照射量空间分布影响[J]. 强激光与粒子束, 2017, 29:065006. (Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation. High Power Laser and Particle Beams, 2017, 29: 065006 [7] 李劲, 张开志, 代志勇, 等. 神龙一号加速器调试[J]. 中国物理C, 2008, 32(S1):247-249. (Li Jin, Zhang Kaizhi, Dai Zhiyong, et al. Commissioning of Dragon-Ⅰ linear induction accelerator. Chinese Physics C, 2008, 32(S1): 247-249 [8] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201. (Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon-Ⅱ accelerator and its key technology. High Power Laser and Particle Beams, 2016, 28: 010201 [9] 朱隽, 章林文, 龙继东, 等. 强流脉冲电子束轰击下回喷靶材速度测量与数值模拟[J]. 强激光与粒子束, 2005, 17(4):599-602. (Zhu Jun, Zhang Linwen, Long Jidong, et al. Measurement and the back-ejecta of tantalum target material impacted by high intensity current pulse electron beam. High Power Laser and Particle Beams, 2005, 17(4): 599-602 [10] 禹海军, 龙继东, 李勤, 等. 叠靶研究[J]. 强激光与粒子束, 2002, 14(5):797-800. (Yu Haijun, Long Jidong, Li Qin, et al. Development of distributed target. High Power Laser and Particle Beams, 2002, 14(5): 797-800 [11] Yu H J, Zhu J, Chen N, et. al Numerical simulations and experiments of beam-target interaction for multipulse bremsstrahlung converter applications[J]. Physical Review Special Topics – Accelerators and beams, 2012, 15: 060401. doi: 10.1103/PhysRevSTAB.15.060401 [12] 李勤, 石金水, 禹海军, 等. 狭缝法测量X射线斑点大小[J]. 强激光与粒子束, 2006, 18(10):1691-1694. (Li Qin, Shi Jinshui, Yu Haijun, et al. Slit X-ray spot size measurement technique. High Power Laser and Particle Beams, 2006, 18(10): 1691-1694 [13] 石金水, 丁伯南, 邓建军, 等. 12 MeV直线感应电子加速器[J]. 强激光与粒子束, 1997, 9(4):599-604. (Shi Jinshui, Ding Bonan, Deng Jianjun, et al. 12 MeV linear induction electron accelerator. High Power Laser and Particle Beams, 1997, 9(4): 599-604 [14] 禹海军, 朱隽, 刘承俊, 等. X光转换靶区物理现象研究[J]. 高能量密度物理, 2010, 1:1-4. (Yu Haijun, Zhu Jun, Liu Chengjun, et al. Develop of physical properties for X-ray converter target zone. High Energy Density Physics, 2010, 1: 1-4