A miniaturized power density measurement system for high-power microwave radiation field
-
摘要: 为解决现有高功率微波辐射场功率密度测量系统测量环节多、系统复杂以及长电缆无法适应复杂电磁环境测量等问题,研制了一款小型化、一体化辐射场功率密度测量系统。系统采用天线-耦合器-转换器作为接收前端,后端采用同轴信号处理单元,在屏蔽箱内完成信号衰减、功率探测及电光转换,可实现系统远程测量与监控,可用于连续波、单次脉冲、连续脉冲辐射场功率密度测量。同时,系统采用模块化校准,可有效降低测量系统不确定度。该系统具备30 dB动态,最小可测脉宽50 ns,可测辐射场功率密度100 MW/m2,系统结构紧凑,简便易携,采用光纤传输,抗电磁辐射,可实现X波段GW级高功率微波辐射场功率密度快速测量。Abstract: To solve the problems of the existing HPM radiation field power density measurement system, such as many measurement links, system complexity and long cable which can’t adapt to complex electromagnetic environment measurement, a miniaturized and integrated power density measurement system of high-power microwave radiation field is developed. An antenna-coupler-adapter is used as the front receiver, the back end of the system is a coaxial signal processing unit, where the attenuation, power detection and electro-optical conversion are achieved in the shield box, hence, the system can be measured and monitored remotely. Meanwhile, modular calibration is applied in the system, which can effectively reduce the measurement uncertainty. The system has 30 dB dynamics, a minimum measurable pulse width of 50 ns and a measurable radiation field power density of 100 MW/m2. It is compact, easy to carry, anti-electromagnetic radiation, and capable of quick power density measurement of GW high-power microwave radiation field in X-band.
-
Key words:
- radiation field /
- power density /
- high-power microwave /
- miniaturization /
- integration
-
表 1 系统功率预估
Table 1. Estimation of system power
frequency/
GHzpower density/
(MW/m2)gain of
antenna/dBeffective area of
antenna /cm2output power of
antenna/dBmcoupling factor of
coupler /dBoutput power of
coupler/dBm8.2 100 15.7 39.8 86.0 40 46.0 10 100 17.4 39.8 86.0 40 46.0 12.4 100 19.4 40.5 86.1 40 46.1 -
[1] 闫军凯, 刘小龙, 叶虎, 等. X波段高功率微波馈源辐射总功率阵列法测量技术[J]. 强激光与粒子束, 2011, 23(11):3149-3153. (Yan Junkai, Liu Xiaolong, Ye Hu, et al. X-band HPM feed total radiation power measurement using array method[J]. High Power Laser and Particle Beams, 2011, 23(11): 3149-3153 [2] 宋莉莉. 基于电光晶体测量高功率微波的技术研究[D]. 长沙: 国防科技大学, 2013.Song Lili. Electro-optic sensors high power microwave. Changsha: National University of Defense Technology, 2013 [3] 李义民, 邢建泉, 王兰. 基于微波光子学的高功率微波测量[J]. 强激光与粒子束, 2016, 28:033028. (LiYimin, Xing Jianquan, Wang Lan. High power microwave measurement based on microwave photonics[J]. High Power Laser and Particle Beams, 2016, 28: 033028 [4] 屈劲, 刘庆想, 胡进光, 等. 高功率微波辐射场功率密度测量系统[J]. 强激光与粒子束, 2004, 16(1):77-80. (Qu Jin, Liu Qingxiang, Hu Jinguang, et al. Measurement system on power density of high power microwave radiation[J]. High Power Laser and Particle Beams, 2004, 16(1): 77-80 [5] 张治强, 王宏军, 张黎军, 等. 高功率微波辐射场功率阵列测量装置研制[J]. 强激光与粒子束, 2010, 22(4):883-886. (Zhang Zhiqiang, Wang Hongjun, Zhang Lijun, et al. Development of array device for power measurement of high power microwave radiation field[J]. High Power Laser and Particle Beams, 2010, 22(4): 883-886 [6] 张黎军, 陈昌华, 滕雁, 等. 高功率微波辐射场远场测量方法[J]. 强激光与粒子束, 2016, 28:053002. (Zhang Lijun, Chen Changhua, Teng Yan, et al. Farfield measurement method of high power microwave in radiation field[J]. High Power Laser and Particle Beams, 2016, 28: 053002 [7] 史鹏飞, 蒋廷勇, 刘小龙, 等. X波段高功率微波一体化辐射场测量系统: 103995187[P]. 2014-08-20.Shi Pengfei, Jiang Tingyong, Liu Xiaolong, et al. X-band high power microwave integrated radiation field measurement system: 103995187. 2014-08-20 [8] Sun D, Xu J. Rectangular waveguide coupler with adjustable coupling coefficient using gap waveguide technology[J]. Electronics Letters, 2017, 53(3): 167-169. doi: 10.1049/el.2016.4039 [9] Wu T, Wang Q, Jin Z, et al. Simulation and design of ridge waveguide coupler[C]//IEEE International Workshop on Microwave and Millimeter Wave Circuits and System Technology. 2012: 1-3. [10] Chen Z L, Tong L, Tian Y, et al. Directional coupler using multi-stage coupled structure theory[J]. Progress in Electromagnetics Research, 2013, 45: 113-123. doi: 10.2528/PIERC13050111 [11] 刘海旭. 一种高功率超宽带波导耦合器的设计方法[J]. 电光系统, 2016(4):30-32. (Liu Haixu. Design method of high power ultra wideband waveguide coupler[J]. Electronic and Electro-optical Systems, 2016(4): 30-32 [12] 马重阳. 基于S波段新型宽带高功率波导定向耦合器的设计与研究[D]. 北京: 北京交通大学, 2016.Ma Chongyang. Research and design of the novel broadband high power waveguide directional coupler based on S-band. Beijing: Beijing Jiaotong University, 2016 [13] Karimabadi S S, Attari A R. X-band multi-hole directional coupler with folded substrate-integrated waveguide[J]. Electromagnetics, 2015, 35(6): 404-414. doi: 10.1080/02726343.2015.1053354 [14] 孙玉洁, 段俊萍, 王雄师, 等. 多孔耦合型太赫兹波导定向耦合器的设计[J]. 红外与激光工程, 2017, 46(1):255-261. (Sun Yujie, Duan Junping, Wang Xiongshi, et al. Design of multi-hole terahertz waveguide directional couplers[J]. Infrared & Laser Engineering, 2017, 46(1): 255-261 [15] 魏振华, 田立松, 冯旭东, 等. 8-18 GHz同轴-波导转换器的分析与设计[J]. 微波学报, 2008, 24(S1):125-128. (Wei Zhenhua, Tian Lisong, Feng Xudong, et al. Analysis and design on 8-18 GHz coaxial-waveguide transition[J]. Journal of Microwaves, 2008, 24(S1): 125-128 [16] 汤一铭, 薄亚明. 6~20 GHz同轴-矩形波导转换器的设计[J]. 微波学报, 2012, 28(2):32-35. (Tang Yiming, Bo Yaming. Design of a coaxial to rect-waveguide transition with enhanced bandwidth of 6~20 GHz[J]. Journal of Microwaves, 2012, 28(2): 32-35 [17] Sun G Q. Design of the broadband coaxial to waveguide adapter[J]. Science & Technology Information, 2010(19): 164-165. [18] Lin F M, Guan T H. Doorknob type little reflection transition of coaxial TEM mode to rectangular TE10 mode[J]. Vacuum Electronics, 2008(2): 22-25.