留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

397 GHz斜注管互作用系统的设计模拟

苏思铭 冯进军

吴菊英, 黄渝鸿, 范敬辉, 等. 非晶粉/硅橡胶复合薄膜应力阻抗性能[J]. 强激光与粒子束, 2015, 27: 024144. doi: 10.11884/HPLPB201527.024144
引用本文: 苏思铭, 冯进军. 397 GHz斜注管互作用系统的设计模拟[J]. 强激光与粒子束, 2019, 31: 123102. doi: 10.11884/HPLPB201931.190368
Wu Juying, Huang Yuhong, Fan Jinghui, et al. Stress-impedance property of amorphous powder/silicone rubber composite film[J]. High Power Laser and Particle Beams, 2015, 27: 024144. doi: 10.11884/HPLPB201527.024144
Citation: Su Siming, Feng Jinjun. Design and simulation of beam-wave interaction system of 397 GHz clinotron[J]. High Power Laser and Particle Beams, 2019, 31: 123102. doi: 10.11884/HPLPB201931.190368

397 GHz斜注管互作用系统的设计模拟

doi: 10.11884/HPLPB201931.190368
详细信息
    作者简介:

    苏思铭(1995—),男,硕士研究生,主要研究方向为短毫米波和太赫兹真空电子器件研制:18645093816@163.com

  • 中图分类号: TN125

Design and simulation of beam-wave interaction system of 397 GHz clinotron

  • 摘要: 斜注管是返波振荡器的一种,通过电子注的倾斜,电子距离慢波结构更近,高频场更强,耦合阻抗和互作用效率更高,显著增加输出功率。对带状注斜注管的互作用系统进行了设计,并首次将双排齿慢波结构应用于斜注管。利用电磁模拟软件和3D粒子模拟软件对设计的斜注管的色散曲线和场分布进行了分析,并对其注-波互作用进行了模拟,可以得到大于100 mW的输出功率以及50 GHz的调谐带宽。输出功率在370.5 GHz频点处处达到峰值2.3 W,电子注电压7.0 kV,注电流120 mA,聚焦磁场1.0 T。
  • 图  1  斜注管注-波互作用系统示意图

    Figure  1.  Beam-wave interaction system of the clinotron

    图  2  斜注管慢波结构三视图

    Figure  2.  Structure diagram of the double corrugated waveguide SWS

    图  3  CST微波工作室中建立的单周期慢波结构模型

    Figure  3.  Solid model of one single period slow wave structure (SWS) in CST

    图  4  计算与模拟得到的斜注管慢波结构色散曲线

    Figure  4.  Comparison of calculation and simulation dispersion curves in the SWS

    图  5  单周期双排齿慢波结构的耦合阻抗

    Figure  5.  Coupling impedance of the SWS

    图  6  耦合阻抗的计算位置

    Figure  6.  Calculation point of coupling impedance

    图  7  CST软件中的斜注管互作用系统模型

    Figure  7.  Interaction section of clinotron solid model in CST

    图  8  CST模拟的电子注形态

    Figure  8.  Sheet beam cross section in CST model

    图  9  互作用系统末端的电子群聚

    Figure  9.  Electron bunching at the end of the interaction section

    图  10  电压调谐曲线

    Figure  10.  Operating frequency versus beam voltage

    图  11  CST软件模拟的互作用系统输出功率曲线

    Figure  11.  Simulated output power in CST

    图  12  模拟得到的370 GHz频点的电场随时间变化的函数

    Figure  12.  Electric field versus time

    图  13  模拟得到的370 GHz频点端口输出功率

    Figure  13.  Simulated output power

    图  14  370.5 GHz频点的快速傅里叶变换谱线

    Figure  14.  Frequency spectrum through FFT (370.5 GHz)

    图  15  397 GHz频点的快速傅里叶变换谱线

    Figure  15.  Frequency spectrum through FFT (397 GHz)

  • [1] Levin G Y, Borodkin A I, Kirichenko A Y, et al. The clinotron[C]//22th European Microwave Conference. 1992: 603-607.
    [2] Molokovsky S I, Sushkov A D. Intense electron and ion beams[M]. Berlin: Springer, 2005: 27-45.
    [3] Ponomarenko S S, Kishko S A, Khutoryan E, et al. Development of CW clinotron oscillator at 400 GHz[C]//International Conference on Mathematical Methods in Electromagnetic Theory. 2012: 348-352.
    [4] 任大鹏, 冯进军. W波段斜注管高频结构的设计和注波互作用模拟[J]. 真空电子技术, 2011, 48(6):21-25. (Ren Dapeng, Feng Jinjun. Design and simulation of the beam-wave interaction system of W-band clinotron. Vacuum Electronics, 2011, 48(6): 21-25 doi: 10.3969/j.issn.1002-8935.2011.06.005
    [5] 姚若妍. 太赫兹斜注管的研究[D]. 成都: 电子科技大学, 2015.

    Yao Ruoyan. Research on the terahertz clinotron. Chengdu: University of Electronic Science and Technology of China, 2015.
    [6] 王晨曦. THz斜注管的设计和高频损耗研究[D]. 合肥: 合肥工业大学, 2016.

    Wang Chenxi. Study on THz clinotron and high frequency loss. Hefei: Hefei University of Technology, 2016
    [7] Ponomarenko S S, Kovshov Y S, Kishko S A, et al. Development of compact CW clinotrons for DNP-NMR spectroscopy[C]//2016 IEEE Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). 2016.
    [8] Vavriv D M, Somov A V, Schünemann K. Clinotron based terahertz imaging system[C]//THz and Security Applications. 2013: 229-237.
    [9] Hu Yulu, Hu Quan, Nauro M, et al. Dispersion characteristics of double-corrugated rectangular waveguide for terahertz vacuum devices[C]//2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2015: 1-2.
    [10] Nishiyama H, Nakamura M. Form and capacitance of parallel-plate capacitors[J]. IEEE Trans Components, Packaging, and Manufacturing Technology—part A, 1994, 17: 477-484. doi: 10.1109/95.311759
    [11] Gilmour A S Jr. Klystrons, traveling wave tubes, magnetrons, crossed-field amplifiers, and gyrotrons[M]. Beijing: National Defense Industry Press, 2012: 97.
    [12] Hammerstad E, Jenson O. Accurate models for micro-strip computer-aided design[C]//IEEE MTTS International Microwave Symposium Digest. 1980: 28-30.
    [13] Yang B B, Kirley M P, Booske J H. Theoretical and empirical evaluation of surface roughness effects on conductivity in the terahertz regime[J]. IEEE Trans Terahertz Science &Technology, 2014, 4(3): 368-375.
  • 期刊类型引用(3)

    1. 苗学策,罗涛,齐志军,丁克良. 附有几何自约束的激光跟踪仪四元数光束法平差. 测绘科学. 2024(01): 33-40 . 百度学术
    2. 张翼飞,董晓浩,陈家华,孙小沛,刘芳芳. 直线加速器控制网测量跟踪仪测角误差标定. 强激光与粒子束. 2024(07): 58-65 . 本站查看
    3. 陈哲,范百兴,邹方星,段童虎,黄赫. 粒子加速器准直中测站坐标系高精度恢复方法. 山东科技大学学报(自然科学版). 2023(06): 30-38 . 百度学术

    其他类型引用(1)

  • 加载中
图(15)
计量
  • 文章访问数:  1056
  • HTML全文浏览量:  398
  • PDF下载量:  112
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-09-19
  • 修回日期:  2019-11-12
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回