Preliminary study of laser-triggered pseudospark switch
-
摘要: 通过等离子体建模仿真及物理实验结合的方式验证了激光触发伪火花开关的可行性。分别使用波长266 nm和532 nm的激光,对激光触发伪火花开关的最低激光触发能量、阳极着火延迟时间和时间跳动三项参数进行测试。在非聚焦模式下,仅调整激光能量,测得开关在波长266 nm激光触发下,最低触发能量为15 mJ,该触发能量下,阳极着火延迟时间约为340 ns,时间跳动约为40 ns;在波长532 nm激光触发下,最低触发能量为83 mJ,该触发能量下,阳极着火延迟时间约为420 ns,时间跳动约为60 ns。在维持实验平台不变的情况下,仅对入射激光进行聚焦,测得波长266 nm激光触发下,最低触发能量为4 mJ,当触发能量8 mJ时,阳极着火延迟时间190 ns,开关时间跳动小于1 ns;波长532 nm激光触发下,最低触发能量为6 mJ,当激光触发能量为8 mJ时,阳极着火延迟时间240 ns,开关时间跳动小于1 ns。Abstract: Laser-triggered pseudospark switches, also called back-lighted thyratrons (BLTs), are low pressure, high voltage, high current glow-mode switches The feasibility of BLTs is verified. The laser beams with wavelengths of 266 nm and 532 nm were used in the test. In the non-focused mode, the minimum trigger energy for 266 nm laser is 15 mJ, the anode ignition delay time is about 340 ns, and the time jitter is about 40 ns. The minimum trigger energy for 532 nm laser is 83 mJ, the anode ignition delay time is about 420 ns, and the time jitter is about 60 ns. In the focused mode, the minimum trigger energy for 266 nm laser is 4 mJ, when the laser trigger energy is 8 mJ, the anode delay time is 190 ns, the jitter is less than 1 ns. The minimum trigger energy for 532 nm laser is 6 mJ, when the laser trigger energy is 8 mJ, the anode delay time is than 240 ns, the jitter is less than 1 ns. The methods to further reduce the energy of the laser trigger will be studied in the future.
-
Key words:
- laser trigger /
- pseudospark switch /
- time parameter /
- high power pulse /
- hollow cathode
-
表 1 非聚焦激光触发能量E测试结果
Table 1. Test results of non-focused mode laser triggering energy E
C/μF RL/Ω UH/V |Ua|/kV λ/nm E/mJ UR/kV τdelay/ns 0.16 5 5.4 15 266 15 12 340 0.16 5 5.4 15 266 22 12 290 0.16 5 5.4 15 266 30 12 210 0.16 5 5.4 15 532 83 12 420 0.16 5 5.4 15 532 120 12 350 0.16 5 5.4 15 532 140 12 288 表 2 聚焦激光触发能量E测试结果
Table 2. Test results of focusing laser triggering energy E
C/μF RL/Ω UH/V |Ua|/kV λ/nm f/cm Emin/mJ UR/kV τdelay/ns 0.16 5 5.4 15 266 30 6 12 240 0.16 5 5.4 15 266 30 8 12 190 0.16 5 5.4 15 266 30 10 12 180 0.16 5 5.4 15 532 40 6 12 290 0.16 5 5.4 15 532 40 8 12 240 0.16 5 5.4 15 532 40 10 12 240 表 3 聚焦激光触发着火延迟时间与时间跳动
Table 3. Delay time and jitter of focusing laser triggering
UH/V |Ua|/kV λ/nm Eλ/mJ τdelay/ns τjitter/ns 1 2 3 4 5 6 5.4 15 266 4 310 310 360 410 460 530 210 6 240 260 250 260 240 240 20 8 190 190 190 190 190 190 <1 10 180 180 180 180 180 180 <1 532 4 1 920 2 220 1 760 1 110 1 260 1 720 1 110 6 290 270 270 300 300 290 30 8 240 240 240 240 240 240 <1 10 240 240 240 240 240 240 <1 -
[1] 王莹, 孙元章, 阮江军, 等. 脉冲功率科学与技术[M]. 北京: 北京航空航天大学出版社, 2010.Wang Ying, Sun Yuanzhang, Ruan Jiangjun, et al. Pulse power science and technology[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010 [2] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 1995.Liu Xisan. High power pulse technology[M]. Beijing: National Defense Industry Press, 1995 [3] Chen H, Jiang C, Kuthi A, et al. An ultra compact back-lighted thyratron for nanosecond switching applications[J]. IEEE Trans Dielectrics and Electrical Insulators, 2009, 16(3): 1043-1047. [4] Jiang C, Kuthi A, Eccles B, et al. Small BLT switches for compact pulsed power applications[C]//International Power Modulator Symposium. 2004: 181-183. [5] Sozer B E, Jiang C, Gundersen A M. Investigation of UV LEDs for compact back-lighted thyratron triggering[C]//Digest of Technical Papers for 17th IEEE International Pulsed Power Conference. 2009. [6] 栾小燕, 张明, 周亮. 一种新型大电流脉冲调制器件——伪火花开关[J]. 真空电子技术, 2012(5):38-42. (Luan Xiaoyan, Zhang Ming, Zhou Liang. A novel large current pulse modulation device—Pseudospark[J]. Vacuum Electronics Technology, 2012(5): 38-42 doi: 10.3969/j.issn.1002-8935.2012.05.009 [7] 栾小燕, 张明, 周亮. 双间隙伪火花开关沿面放电触发材料的测试与研究[J]. 真空电子技术, 2014(2):32-37. (Luan Xiaoyan, Zhang Ming, Zhou Liang. Test and research on the trigger material of the double-gap pseudospark switch along the surface discharge[J]. Vacuum Electronics Technology, 2014(2): 32-37 doi: 10.3969/j.issn.1002-8935.2014.02.010 [8] 张明, 周亮, 栾小燕, 等. 伪火花开关大电容脉冲放电的测试与研究[J]. 真空电子技术, 2017(4):30-34. (Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Test and research of pseudospark switch large capacitance pulse discharge[J]. Vacuum Electronics Technology, 2017(4): 30-34 [9] Mechtersheimer G, Kohler R, Lasser T, et al. High repetition rate, fast current rise, pseudo-spark switch[J]. Phys E: Sci Instrum, 1986, 19(6): 466-467. doi: 10.1088/0022-3735/19/6/015 [10] Boeuf P J, Pitchford C L. Pseudospark discharges via computer simulation[J]. IEEE Trans Plasma Science, 1991, 19(2): 286-296. doi: 10.1109/27.106826 [11] Bochkov D V, Djailev M V, Ushich V G, et al. Sealed-off pseudospark swiches[C]//1st International Congress on Radiation Physics, High Current Electronics, and Modification of Materials. 2000: 136-140. [12] Frank K, Urban J, Bickes C, et al. Mechanism of the pseudospark initiation for the switches with a trigger unit based on flashover[J]. Discharges and Electrical Insulation in Vacuum, 2000, 1: 331-334. doi: 10.1109/DEIV.2000.877316