留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光触发伪火花开关的研究

周亮 张明 孙承革

周亮, 张明, 孙承革. 激光触发伪火花开关的研究[J]. 强激光与粒子束, 2020, 32: 035001. doi: 10.11884/HPLPB202032.190094
引用本文: 周亮, 张明, 孙承革. 激光触发伪火花开关的研究[J]. 强激光与粒子束, 2020, 32: 035001. doi: 10.11884/HPLPB202032.190094
Zhou Liang, Zhang Ming, Sun Chengge. Preliminary study of laser-triggered pseudospark switch[J]. High Power Laser and Particle Beams, 2020, 32: 035001. doi: 10.11884/HPLPB202032.190094
Citation: Zhou Liang, Zhang Ming, Sun Chengge. Preliminary study of laser-triggered pseudospark switch[J]. High Power Laser and Particle Beams, 2020, 32: 035001. doi: 10.11884/HPLPB202032.190094

激光触发伪火花开关的研究

doi: 10.11884/HPLPB202032.190094
详细信息
    作者简介:

    周 亮(1980—),男,硕士,高级工程师,从事高功率脉冲气体开关研究;quartz0771@sina.com

  • 中图分类号: TN134

Preliminary study of laser-triggered pseudospark switch

  • 摘要: 通过等离子体建模仿真及物理实验结合的方式验证了激光触发伪火花开关的可行性。分别使用波长266 nm和532 nm的激光,对激光触发伪火花开关的最低激光触发能量、阳极着火延迟时间和时间跳动三项参数进行测试。在非聚焦模式下,仅调整激光能量,测得开关在波长266 nm激光触发下,最低触发能量为15 mJ,该触发能量下,阳极着火延迟时间约为340 ns,时间跳动约为40 ns;在波长532 nm激光触发下,最低触发能量为83 mJ,该触发能量下,阳极着火延迟时间约为420 ns,时间跳动约为60 ns。在维持实验平台不变的情况下,仅对入射激光进行聚焦,测得波长266 nm激光触发下,最低触发能量为4 mJ,当触发能量8 mJ时,阳极着火延迟时间190 ns,开关时间跳动小于1 ns;波长532 nm激光触发下,最低触发能量为6 mJ,当激光触发能量为8 mJ时,阳极着火延迟时间240 ns,开关时间跳动小于1 ns。
  • 图  1  伪火花开关典型结构

    Figure  1.  Typical structure of pseudospark switch

    图  2  最大初动能与入射光频率的关系曲线

    Figure  2.  Relationship between maximum initial kinetic energy and laser frequency

    图  3  激光触发伪火花开关脉冲放电仿真结果

    Figure  3.  Simulation results of pulse discharge based on laser-triggered pseudospark

    图  4  负高压测试电路图及实物图

    Figure  4.  Negative high voltage test circuit and physical picture

    图  5  非聚焦模式示意图

    Figure  5.  Schematic diagram of non-focused mode

    图  6  非聚焦状态下,266 nm和532 nm阳极电压跌落及激光器标准信号波形

    Figure  6.  Pulse discharge waveform of laser-triggered pseudospark(non-focused;by 266 nm and 532 nm laser beams)

    图  7  聚焦状态下,266 nm和532 nm阳极电压跌落及激光器标准信号波形

    Figure  7.  The pulse discharge waveforms of laser-triggered pseudospark(focused;by 266 nm and 532 nm laser beams)

    图  8  聚焦模式示意图

    Figure  8.  The schematic diagram of focused mode

    表  1  非聚焦激光触发能量E测试结果

    Table  1.   Test results of non-focused mode laser triggering energy E

    C/μFRLUH/V|Ua|/kVλ/nmE/mJUR/kVτdelay/ns
    0.1655.4152661512340
    0.1655.4152662212290
    0.1655.4152663012210
    0.1655.4155328312420
    0.1655.41553212012350
    0.1655.41553214012288
    下载: 导出CSV

    表  2  聚焦激光触发能量E测试结果

    Table  2.   Test results of focusing laser triggering energy E

    C/μFRLUH/V|Ua|/kVλ/nmf/cmEmin/mJUR/kVτdelay/ns
    0.1655.41526630612240
    0.1655.41526630812190
    0.1655.415266301012180
    0.1655.41553240612290
    0.1655.41553240812240
    0.1655.415532401012240
    下载: 导出CSV

    表  3  聚焦激光触发着火延迟时间与时间跳动

    Table  3.   Delay time and jitter of focusing laser triggering

    UH/V|Ua|/kVλ/nmEλ/mJτdelay/nsτjitter/ns
    123456
    5.4152664310310360410460530210
    624026025026024024020
    8190190190190190190<1
    10180180180180180180<1
    53241 9202 2201 7601 1101 2601 7201 110
    629027027030030029030
    8240240240240240240<1
    10240240240240240240<1
    下载: 导出CSV
  • [1] 王莹, 孙元章, 阮江军, 等. 脉冲功率科学与技术[M]. 北京: 北京航空航天大学出版社, 2010.

    Wang Ying, Sun Yuanzhang, Ruan Jiangjun, et al. Pulse power science and technology[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2010
    [2] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 1995.

    Liu Xisan. High power pulse technology[M]. Beijing: National Defense Industry Press, 1995
    [3] Chen H, Jiang C, Kuthi A, et al. An ultra compact back-lighted thyratron for nanosecond switching applications[J]. IEEE Trans Dielectrics and Electrical Insulators, 2009, 16(3): 1043-1047.
    [4] Jiang C, Kuthi A, Eccles B, et al. Small BLT switches for compact pulsed power applications[C]//International Power Modulator Symposium. 2004: 181-183.
    [5] Sozer B E, Jiang C, Gundersen A M. Investigation of UV LEDs for compact back-lighted thyratron triggering[C]//Digest of Technical Papers for 17th IEEE International Pulsed Power Conference. 2009.
    [6] 栾小燕, 张明, 周亮. 一种新型大电流脉冲调制器件——伪火花开关[J]. 真空电子技术, 2012(5):38-42. (Luan Xiaoyan, Zhang Ming, Zhou Liang. A novel large current pulse modulation device—Pseudospark[J]. Vacuum Electronics Technology, 2012(5): 38-42 doi: 10.3969/j.issn.1002-8935.2012.05.009
    [7] 栾小燕, 张明, 周亮. 双间隙伪火花开关沿面放电触发材料的测试与研究[J]. 真空电子技术, 2014(2):32-37. (Luan Xiaoyan, Zhang Ming, Zhou Liang. Test and research on the trigger material of the double-gap pseudospark switch along the surface discharge[J]. Vacuum Electronics Technology, 2014(2): 32-37 doi: 10.3969/j.issn.1002-8935.2014.02.010
    [8] 张明, 周亮, 栾小燕, 等. 伪火花开关大电容脉冲放电的测试与研究[J]. 真空电子技术, 2017(4):30-34. (Zhang Ming, Zhou Liang, Luan Xiaoyan, et al. Test and research of pseudospark switch large capacitance pulse discharge[J]. Vacuum Electronics Technology, 2017(4): 30-34
    [9] Mechtersheimer G, Kohler R, Lasser T, et al. High repetition rate, fast current rise, pseudo-spark switch[J]. Phys E: Sci Instrum, 1986, 19(6): 466-467. doi: 10.1088/0022-3735/19/6/015
    [10] Boeuf P J, Pitchford C L. Pseudospark discharges via computer simulation[J]. IEEE Trans Plasma Science, 1991, 19(2): 286-296. doi: 10.1109/27.106826
    [11] Bochkov D V, Djailev M V, Ushich V G, et al. Sealed-off pseudospark swiches[C]//1st International Congress on Radiation Physics, High Current Electronics, and Modification of Materials. 2000: 136-140.
    [12] Frank K, Urban J, Bickes C, et al. Mechanism of the pseudospark initiation for the switches with a trigger unit based on flashover[J]. Discharges and Electrical Insulation in Vacuum, 2000, 1: 331-334. doi: 10.1109/DEIV.2000.877316
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1129
  • HTML全文浏览量:  343
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-08
  • 修回日期:  2019-09-17
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回