留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.3 GHz超导腔的掺氮实验

董超 沙鹏 刘佰奇 李中泉 杨际森 王洪磊

董超, 沙鹏, 刘佰奇, 等. 1.3 GHz超导腔的掺氮实验[J]. 强激光与粒子束, 2020, 32: 045105. doi: 10.11884/HPLPB202032.190141
引用本文: 董超, 沙鹏, 刘佰奇, 等. 1.3 GHz超导腔的掺氮实验[J]. 强激光与粒子束, 2020, 32: 045105. doi: 10.11884/HPLPB202032.190141
Dong Chao, Sha Peng, Liu Baiqi, et al. Nitrogen doping experiment of 1.3 GHz superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045105. doi: 10.11884/HPLPB202032.190141
Citation: Dong Chao, Sha Peng, Liu Baiqi, et al. Nitrogen doping experiment of 1.3 GHz superconducting cavity[J]. High Power Laser and Particle Beams, 2020, 32: 045105. doi: 10.11884/HPLPB202032.190141

1.3 GHz超导腔的掺氮实验

doi: 10.11884/HPLPB202032.190141
基金项目: 科技部重点研发计划项目(2016YFA0400400);国家自然科学基金项目(11505197);中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-SLH001)
详细信息
    作者简介:

    董 超(1990—),女,博士,从事超导射频技术研究;dongchao@ihep.ac.cn

    通讯作者:

    沙 鹏(1982—),男,博士,从事加速器超导高频技术研究;shapeng@ihep.ac.cn

  • 中图分类号: TL594

Nitrogen doping experiment of 1.3 GHz superconducting cavity

  • 摘要:

    为了大幅度提高纯铌超导腔的品质因数,从而降低其使用功耗,选择对超导腔进行高温氮掺杂处理。立足国内外大型加速器的需求,中国科学院高能物理研究所首先开展了1.3 GHz 1-cell超导腔的研究,包括常规处理以及氮掺杂实验,并且对掺杂前后的结果进行了分析、对比。结果表明,通过掺氮,两只1.3 GHz 1-cell细晶粒纯铌超导腔的品质因数均获得了显著提升,同时在超导腔低温垂直测试中观察到了比较明显的反常的品质因数随加速梯度变化的曲线,即“anti-Q-slope”现象。

  • 图  1  表面处理流程

    Figure  1.  Procedures of surface processing

    图  2  1300S3号腔的赤道焊缝

    Figure  2.  Weld seam on equator of #1300S3 cavity

    图  3  安装退磁线圈

    Figure  3.  Assembly of degaussing coil

    图  4  两只1.3 GHz超导腔的磁通排出实验

    Figure  4.  Magnetic flux expulsion experiments of two 1.3 GHz cavities

    图  5  两只1.3 GHz超导腔垂直测试结果

    Figure  5.  Vertical test results of two 1.3 GHz cavities

    图  6  1.3 GHz超导腔的掺氮

    Figure  6.  N-doping of 1.3 GHz cavity

    图  7  1300S3号超导腔掺氮前后垂直测试结果比较

    Figure  7.  Comparison of vertical test results of #1300S3 and #1300S4 cavity before and after N-doping

  • [1] Grassellino A, Romanenko A, Posen S, et al. N doping: progress in development and understanding[C]//The 17th International Conference on RF Superconductivity. 2015: 48-54.
    [2] Merio M, Checchin M, Crawford A, et al. Furnace N2 doping treatments at Fermilab[C]//The 17th International Conference on RF Superconductivity. 2015: 423-427.
    [3] Ge Mingqi, Eichhorn R, Elmore B, et al. Performance of nitrogen-doped 9-cell SRF cavities in vertical tests at Cornell University[C]//The 17th International Conference on RF Superconductivity. 2015: 328-332.
    [4] Konomi T, Dohmae T, Hori Y, et al. Trial of nitrogen infusion and nitrogen doping by using J-PARC furnace[C]//The 18th International Conference on RF Superconductivity. 2017: 775-778.
    [5] Sha Peng, Liu Baiqi, Zhang Xinying, et al. R&D of CEPC cavity[C]//The 18th International Conference on RF Superconductivity. 2017: 463-465.
    [6] Palczewski A D, Marhauser F. Material qualification of LCLS-II production niobium material including RF and flux expulsion measurements on single cell cavities[C]//Proc of The 28th Linear Accelerator Conference. 2016: 199-202.
    [7] Melnychuk O S, Grassellino A, Lewis F, et al. Vertical cavity test facility at Fermilab[C]//The 17th International Conference on RF Superconductivity. 2015: 534-538.
    [8] Martinello M, Grassellino A, Checchin M, et al. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium[J]. Applied Physics Letters, 2016, 109: 062601. doi: 10.1063/1.4960801
    [9] Checchin M, Martinello M, Melnychuk O S, et al. New insight on nitrogen infusion revealed by successive nanometric material removal[C]//The 9th International Particle Accelerator Conference. 2018: 2665-2667.
    [10] Martinello M, Aderhold S, Chandrasekaran S K, et al. Anti-Q-slope enhancement in high-frequency niobium cavities[C]//The 9th International Particle Accelerator Conference. 2018: 2707-2709.
  • 加载中
图(7)
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  526
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-03
  • 修回日期:  2019-08-16
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回