留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流加速器基于空间限束的亚毫米焦斑产生技术研究

王毅 李劲 李勤 代志勇

王毅, 李劲, 李勤, 等. 强流加速器基于空间限束的亚毫米焦斑产生技术研究[J]. 强激光与粒子束, 2020, 32: 054002. doi: 10.11884/HPLPB202032.190166
引用本文: 王毅, 李劲, 李勤, 等. 强流加速器基于空间限束的亚毫米焦斑产生技术研究[J]. 强激光与粒子束, 2020, 32: 054002. doi: 10.11884/HPLPB202032.190166
Wang Yi, Li Jin, Li Qin, et al. Generation of sub-mm focal spot for intense-current accelerator utilizing spatial collimating restriction[J]. High Power Laser and Particle Beams, 2020, 32: 054002. doi: 10.11884/HPLPB202032.190166
Citation: Wang Yi, Li Jin, Li Qin, et al. Generation of sub-mm focal spot for intense-current accelerator utilizing spatial collimating restriction[J]. High Power Laser and Particle Beams, 2020, 32: 054002. doi: 10.11884/HPLPB202032.190166

强流加速器基于空间限束的亚毫米焦斑产生技术研究

doi: 10.11884/HPLPB202032.190166
基金项目: 国家自然科学基金项目(11875242)
详细信息
    作者简介:

    王 毅(1983—),男,博士,从事强流电子束及X光探测技术研究;wangyi_caep@163.com

  • 中图分类号: O434.1;TL506

Generation of sub-mm focal spot for intense-current accelerator utilizing spatial collimating restriction

  • 摘要:

    焦斑大小是评价加速器性能的关键指标之一,减小焦斑尺寸可以有效提高闪光照相中对客体成像的空间分辨能力。本文研究设计空间限束结构,减小加速器光源焦斑的有效尺寸降低成像几何模糊。采用蒙特卡罗方法对电子束打靶产生轫致辐射和光子穿过空间限束结构的成像过程进行模拟,分析采用不同空间限束结构时光源有效焦斑的分布及大小、光子角度分布和能谱分布等特征参数。理论计算结果表明,通过空间限束可以使强流加速器光源焦斑FWHM减小至亚毫米量级。

  • 图  1  空间限束结构示意图

    Figure  1.  Schematic of X-ray collimating

    图  2  无准直体时光源焦斑分布

    Figure  2.  Spatial distribution of source spot without collimating structure

    图  3  准直结构1条件下的光源焦斑分布

    Figure  3.  Spatial distribution of source spot with the 1st collimating structure

    图  4  准直结构2条件下的光源焦斑分布

    Figure  4.  Spatial distribution of source spot with the 2nd collimating structure

    图  5  光源焦斑分布MTF曲线

    Figure  5.  MTF curves of the source spot

    图  6  无准直体时光源照射量角度分布

    Figure  6.  Angular distribution of the light source radiation without collimating structure

    图  7  限束结构1条件下的光源照射量角度分布

    Figure  7.  Angular distribution of the light source radiation with the 1st collimating structure

    图  8  限束结构2条件下的光源照射量角度分布

    Figure  8.  Angular distribution of the light source radiation with the 2nd collimating structure

    图  9  无准直体时正前方光子数量谱分布

    Figure  9.  Photon spectra at straight forward direction without collimating structure

    图  10  准直结构1条件下正前方光子数量谱分布

    Figure  10.  Photon spectra at straight forward direction with the 1st collimating structure

    图  11  准直结构2条件下正前方光子数量谱分布

    Figure  11.  Photon spectra at straight forward direction with the 2nd collimating structure

    表  1  有无限束结构条件下的光源焦斑尺寸

    Table  1.   Comparison of light source spot size between imaging processes with and without collimating structures

    collimating structureFWHM of electron beam /mmFWHM of light source/mmf50%MTF/mm-1D50%MTF/mmD50%MTF /FWHM
    without collimating structure1.501.520.302.391.56
    2.001.980.223.181.61
    3.003.050.164.451.45
    the 1st collimating structure1.500.660.641.101.50
    2.000.680.591.191.60
    3.000.710.561.271.66
    the 2nd collimating structure1.500.850.581.211.34
    2.000.890.541.301.35
    3.000.920.501.411.47
    下载: 导出CSV

    表  2  有无限束结构条件下的光源照射量分布

    Table  2.   Comparison of light source radiation between imaging processes with and without collimating structures

    collimating
    structure
    FWHM of electron
    beam /mm
    maximum of exposure/
    (10−13R/electron)
    emitting angle at half maximum
    of exposure /(°)
    photon number flux /
    (10−4cm−2·electron−1
    average photon
    energy /MeV
    without collimating structure1.506.316.556.333.06
    2.006.925.816.903.08
    3.007.565.177.523.09
    the 1st collimating structure1.501.481.211.283.61
    2.001.021.240.873.65
    3.000.551.280.463.69
    the 2nd collimating structure1.502.021.261.803.46
    2.001.421.291.253.52
    3.000.771.320.673.57
    下载: 导出CSV
  • [1] Boyd T J, Rogers B T, Tesche R R, et al. PHERMEX—A high-current electron accelerator for use in dynamic radiography[J]. Rev Sci Instrum, 1965, 36: 1401-1408. doi: 10.1063/1.1719343
    [2] Scarpetti R D, Boyd J K, Earley G G, et al. Upgrades to the LLNL flash X-ray induction linear accelerator (FXR)[C]//11th IEEE International Pulsed Power Conference — Digest of Technical Papers. 1997, 1/2: 597–602.
    [3] 邓建军, 丁伯南, 王华岑, 等. “神龙一号”直线感应加速器物理设计[J]. 强激光与粒子束, 2003, 15(5):502-504. (Deng Jianjun, Ding Bonan, Wang Huacen, et al. , Physical design of the Dragon-I linear induction accelerator[J]. High Power Laser and Particle Beams, 2003, 15(5): 502-504
    [4] 施将君. 高能闪光照相引论[M]. 北京: 国防工业出版社, 1997.

    Shi Jiangjun. Introduction of high-energy flash radiography[M]. Beijing: National Defence Industry Press, 1997
    [5] Briesmeister J F. MCNP – A general Monte Carlo N-particle transport code – Version 4C[R]. LA-13709-M, 2000.
    [6] Agostinelli S, Allison J, Amako K, et al. Geant4 – a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A – Accelerators Spectrometers Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [7] Kawrakow I, Rogers D W O. The EGSncr code system: Monte Carlo simulation of electron and photon transport[R]. Ottawa: National Research Council of Canada, 2002.
    [8] 王毅, 李勤, 代志勇. 蒙特卡罗模拟分析电子束发射度对照射量空间分布影响[J]. 强激光与粒子束, 2017, 29:065006. (Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29: 065006 doi: 10.11884/HPLPB201729.170029
    [9] Muller K H. Measurement and characterization of X-ray spot size[R]. LA-UR-89-1886, 1989.
    [10] Ekdahl C. Characterizing flash-radiography source spots[J]. Journal of the Optical Society of America A, 2011, 28(12): 2501-2509. doi: 10.1364/JOSAA.28.002501
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1191
  • HTML全文浏览量:  502
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-15
  • 修回日期:  2020-02-01
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回