Electron beam introduction of Ka-band coaxial multi-beam relativistic klystron amplifier
-
摘要: 首先通过理论分析确定影响多注电子束引入效率的主要因素,确定初步的结构参数;其次利用三维粒子模拟软件建立Ka波段相对论多注二极管模型进行仿真优化,使电子束引入效率达到89%;并开展了电子束的产生与传输实验研究,验证了粒子模拟仿真结果。在电子束电压502 kV、束流4.34 kA、轴向磁感应强度0.76 T的条件下,电子束引入效率达到了72%,由电子束轰击尼龙靶材获得的电子束束斑图表明,电子束在产生与传输过程中形状未发生畸变,产生的电子束直径约为2 mm。模拟和实验研究验证了设计的强流多注二极管可以产生高品质的电子束和实现高效率的电子束引入。
-
关键词:
- 高功率微波 /
- 同轴多注相对论速调管 /
- 相对论多注二极管 /
- 多注电子束引入
Abstract: This paper firstly determines the main factors affecting its the efficiency of multi-injection electron beam introduction and preliminary structural parameters through theoretical analysis. Secondly, the Ka-band relativistic multi-beam diode model is established by three-dimensional particle simulation software to optimize the structural parameters. The final efficiency of electron beam introduction can reach 89%. An experimental study on the generation and transmission of electron beams was carried out to verify the results of particle simulation. Under the condition of electron beam voltage 502 kV, beam current 4.34 kA, axial magnetic induction strength 0.76 T, the electron beam introduction efficiency reached 72%. The electron beam pattern obtained by electron beam bombardment of the nylon target indicates that the shape of the electron beam is not distorted during generation and transmission. The generated electron beam diameter is about 2 mm. The simulation and experimental results show that the designed high-current multi-beam diode can generate high-quality electron beams and achieve efficient electron beam introduction. -
表 1 多注阴极长度对引入效率的影响
Table 1. Effects of multi-beam cathode length on injection efficiency
L/mm total beam current/kA drift tube current/kA efficiency/% 8 5.56 3.9 70.1 10 5.65 4.2 74.3 15 5.76 4.4 76.4 表 2 磁场强度对引入效率的影响
Table 2. Effects of magnetic field intensity on injection efficiency
B0/T total beam current/kA drift tube current/kA efficiency/% 0.8 4.36 3.3 75.7 0.9 4.33 3.6 83.1 1.0 4.35 3.7 85.1 表 3 电压对引入效率的影响
Table 3. Effects of voltage on injection efficiency
V/kV total beam current/kA drift tube current/kA efficiency/% 400 3.12 2.7 86.5 500 4.35 4.1 86.3 600 5.64 4.8 85.1 表 4 阴阳极间距对引入效率的影响
Table 4. Effects of distance between anode and cathode on injection efficiency
D/mm total beam current/kA drift tube current/kA efficiency/% 25 5.28 4.7 89.0 30 4.75 4.1 86.3 35 4.35 3.7 85.0 -
[1] Benford J, Swegle J A. 高功率微波[M]. 北京: 国防工业出版社, 2008: 293-335.Benford J, Swegle J A. High power microwaves. Beijing: National Defense Industry Press, 2008: 293-335 [2] Robert J B, Edl S. 高功率微波源与技术[M]. 北京: 清华大学出版社, 2005: 57-63.Robert J B, Edl S. High power microwave sources and technologies. Beijing: Tsinghua University Press, 2005: 57-63 [3] 黄华, 范植开, 马乔生, 等. 长脉冲相对论速调管放大器的初步实验研究[J]. 强激光与粒子束, 2002, 14(6):915-919. (Huang Hua, Fan Zhikai, Ma Qiaosheng, et al. Progress on a long pulse relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2002, 14(6): 915-919 [4] Huang Hua, Chen Zhaofu, Li Shifeng, et al. Investigation on pulse-shortening of S-band, long pulse, four-cavity, high power relativistic klystron amplifier[J]. Physics of Plasmas, 2019, 26: 033107. doi: 10.1063/1.5086734 [5] Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band long pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Transactions on Electron Devices, 2019, 66: 722-728. doi: 10.1109/TED.2018.2879193 [6] Li Shifeng, Duan Zhaoyun, Huang Hua, et al. Extended interaction oversized coaxial relativistic klystron amplifier with gigawatt-level output at Ka band[J]. Physics of Plasmas, 2018, 25: 043116. doi: 10.1063/1.5006417 [7] 刘振帮, 金晓, 黄华, 等. X波段长脉冲同轴多注相对论速调管放大器的分析与设计[J]. 物理学报, 2012, 61:128401. (Liu Zhenbang, Jin Xiao, Huang Hua, et al. Analysis and design of X-band coaxial multi-beam relativistic klystron amplifier[J]. Acta Physica Sinica, 2012, 61: 128401 [8] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010: 129-132.Ding Yaogen. Design, manufacture and application of high power klystron. Beijing: National Defense Industry Press, 2010: 129-132 [9] 李乐乐, 黄华, 刘振帮, 等. 强流多注电子束高效率引入的模拟研究[J]. 强激光与电子束, 2016, 28:123003. (Li Lele, Huang Hua, Liu Zhenbang, et al. PIC simulation of high efficient injection of intense relative multi-beam[J]. High Power Laser and Particle Beams, 2016, 28: 123003 [10] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005: 186-187.Liu Xisan. High pulsed power technology. Beijing: National Defense Industry Press, 2005: 186-187 [11] 雷维·夏奇特. 周期与准周期结构中的束波互作用[M]. 黄华, 何琥, 王冬, 等, 译. 北京: 中国原子能出版社, 2018: 122-125.Levi S. Beam-wave interavtion in periodic and quasi-periodic structures. Huang Hua, He Hu, Wang Dong, et al,Trans. Beijing: Atomic Energy Press, 2018: 122-125