Design and implementation of semiconductor multi-physical parallel computing program JEMS-CDS-Device
-
摘要: 针对复杂电磁环境下器件多物理效应机理研究需求,研发了半导体多物理效应并行计算程序JEMS-CDS-Device。介绍了JEMS-CDS-Device的架构设计与实现技术。程序基于非结构网格并行框架JAUMIN实现,采用有限体积法(FVM)离散,使用牛顿法全耦合求解“电-载流子输运-热”问题。程序采用“内核+算法库”形式架构,支持2维和3维非结构网格、千万自由度问题并行求解,支持物理方程、离散算法、材料物理模型等的扩展开发。Abstract: Aiming at the research requirements of multi-physical effects mechanism of devices in complex electromagnetic environment, a parallel computing program for semiconductor multi-physics effects, JEMS-CDS-Device, is developed. This paper introduces the architecture design and implementation technology of JEMS-CDS-Device. The program is based on the unstructured grid parallel framework—JAUMIN. It uses the finite volume method (FVM) to discretize and uses the Newton method to get fully coupled solution of the “electric-carrier transport-thermal” problem. The program which adopts the “kernel + algorithm library” form architecture, supports 2D/3D unstructured mesh, and can solve problems of tens of millions of degrees of freedom parallelly. It supports extended development of physical effect equations, discrete algorithms, material physics models, etc.
-
图 5 网格层次结构与并行构件[17]
Figure 5. Grid hierarchy and parallel components
表 1 DDM1非线性迭代中线性解法器典型收敛情况)
Table 1. Typical convergence of linear solver in DDM1 nonlinear iteration
linear solver precondition time (iterations)/s mesh refinement 0;
DOF: 11 165mesh refinement 1;
DOF: 43 925mesh refinement 2;
DOF: 174 245mesh refinement 3;
DOF: 694 085LU − 0.209 6 (1) 1.065 2 (1) 7.018 4 (1) 50.442 3 (1) BiCGSTAB Jacobi 0.131 8 (106) 0.868 3 (226) 7.119 6 (455) 68.205 1 (1 011) BiCGSTAB ASM 0.126 5 (106) 0.919 0 (226) 7.666 1 (455) 72.558 4 (1 011) BiCGSTAB ILU 0.127 6 (106) 0.840 7 (226) 7.020 5 (455) 69.624 0 (1 011) GMRES BJacobi 0.263 5 (448) 2.358 7 (940) 26.995 4 (2 548) 427.814 (9 450) GMRES ASM 0.291 4 (448) 2.466 6 (940) 27.758 8 (2 548) 462.929 (9 450) GMRES ILU 0.283 8 (448) 2.311 4 (940) 27.126 1 (2 548) 425.375 450) 表 2 弱扩展并行测试(Basic Newton,ASM+BiCGSTAB)
Table 2. Weak extension parallel test (Basic Newton,ASM+BiCGSTAB)
cores unknowns average iterations time/s efficiency/% 4 1.74×105 154 83.32 100 16 6.94×105 353 151.70 54.9 64 2.77×106 757 285.78 29.1 256 1.11×107 1727 531.19 15.7 表 3 强扩展并行测试(Basic Newton,ASM+BiCGSTAB,2.771×106未知量)
Table 3. Strongly extended parallel test (Basic Newton,ASM+BiCGSTAB,2.771×106 Unknowns)
cores total time/s linear solver time/s speedup efficiency/% 32 470.31 228.44 1.00 100.0 64 284.78 113.67 1.65 82.6 128 157.90 59.20 2.98 74.5 256 99.56 32.31 4.72 59.1 -
[1] 赵振国. PIN限幅器高功率微波效应机理仿真与实验研究[D]. 绵阳: 中国工程物理研究院, 2013: 1-53.Zhao Zhenguo. Simulation and experimental study of high power microwave effect of PIN limiter[D]. Mianyang: China Academy of Engineering Physics, 2013: 1-53 [2] 孟凡宝, 杨周炳, 马弘舸, 等. 高功率微波超宽带电磁脉冲技术[M]. 北京: 国防工业出版社, 2011: 178-196.Meng Fanbao, Yang Zhoubing, Ma Hongge, et al. High-power microwave ultra-wideband electromagnetic pulse technology[M]. Beijing: National Defense Industry Press, 2011: 178-196 [3] 马振洋, 柴常春, 任兴荣, 等. 双极晶体管微波损伤效应与机理[J]. 物理学报, 2012, 61:075011. (Ma Zhenyang, Chai Changchun, Ren Xinrong, et al. Microwave damage effect and mechanism of bipolar transistor[J]. Acta Physica Sinica, 2012, 61: 075011 [4] 游海龙, 蓝建春, 范菊平, 等. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应管特性退化研究[J]. 物理学报, 2012, 61:1085011. (You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 1085011 [5] 陈曦, 杜正伟, 龚克. 脉冲宽度对PIN限幅器微波脉冲热效应的影响[J]. 强激光与粒子束, 2010, 22(7):1602-1606. (Chen Xi, Du Zhengwei, Gong Ke. Effect of pulse width on thermal effect of microwave pulse on PIN limiter[J]. High Power Laser and Particle Beams, 2010, 22(7): 1602-1606 doi: 10.3788/HPLPB20102207.1602 [6] 周怀安. 电磁脉冲对电子设备中半导体有源器件作用的研究[D]. 北京: 清华大学电子工程系, 2005: 1-32.Zhou Huaian. Research on the effect of electromagnetic pulses on semiconductor active devices in electronic equipment[D]. Beijing: Department of Electronic Engineering, Tsinghua University, 2005: 1-32 [7] 陈曦, 杜正伟, 龚克. 外电路在电磁脉冲对双极型晶体管作用过程中的影响[J]. 强激光与粒子束, 2007, 19(7):1197-1202. (Chen Xi, Du Zhengwei, Gong Ke. Influence of circuit during injection of EMP into bipolar junction transistor[J]. High Power Laser and Particle Beams, 2007, 19(7): 1197-1202 [8] 韦源, 谢红刚, 贡顶, 等. 金属氧化物半导体场效应管长期辐射效应的数值模拟[J]. 强激光与粒子束, 2013, 25(4):1031-1034. (Wei Yuan, Xie Honggang, Gong Ding. Numerical simulation of long-term radiation effects for MOSFETs[J]. High Power Laser and Particle Beams, 2013, 25(4): 1031-1034 doi: 10.3788/HPLPB20132504.1031 [9] Kramer K M, Hitchon W N G. Semiconductor devices: A simulation approach[M]. New Jersey: Prentice Hall PTR, 1997:20-54. [10] 贡顶, 张相华. 半导体器件的数值模拟: GSS软件用户手册[R]. 2008: 14-150.Gong Ding, Zhang Xianghua. Numerical simulation of semiconductor devices: GSS software user manual[R]. 2008: 14-150 [11] 施敏, 伍国珏, 耿莉, 等. 半导体器件物理[M]. 西安: 西安交通大学出版社, 2008:5-193.Shi Min, Wu Guojue, Geng Li, et al. Physics of semiconductor devices[M]. Xi’an: Xi’an Jiaotong University Press, 2008:5-193 [12] 李荣华. 偏微分方程数值解法[M]. 北京: 高等教育出版社, 2005: 45-213.Li Ronghua. Numerical solution of partial differential equations[M]. Beijing: Higher Education Press, 2005:45-213 [13] Balay S, Abhyankar S, Adams M, et al. PETSC users manual revision 3.8[R]. No. ANL-95/11 Rev 3.8, 2017: 73-129. [14] Speelpenning B. Compiling fast partial derivatives of functions given by algorithms[R]. UIUCDCS-R-80-1002, 1980: 8-82. [15] Synopsys. Sentaurus device user guide[M]. Version H, 2013: 973-986 [16] Lin P T. Improving multigrid performance for unstructured mesh drift-diffusion simulations on 147,000 cores[J]. International Journal for Numerical Methods in Engineering, 2012, 91(9): 971-989. doi: 10.1002/nme.4315 [17] 领域编程框架团队. 并行自适用非结构网格应用支撑软件框架JAUMIN用户指南[M]. 北京: 北京应用物理与计算数学研究所, 2015.Domain Programming Famework Team. Parallel self-adaptive unstructured grid application support software framework JAUMIN user guide[M]. Beijing: Institute of Applied Physics and Computational Mathematics, 2015 [18] Liu, Qingkai, Mo Zeyao, Zhang Aiqing, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes[J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35-48. doi: 10.1007/s42514-019-00001-z [19] http://www.caep-scns.ac.cn/JAUMIN.php[EB/OL]. [20] 肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析[J]. 计算机辅助设计与图形学学报, 2014, 26(5):675-686. (Xiao Li, Cao Xiaolin, Wang Huawei, et al. Large-scale data visual analysis for numerical simulation of laser fusion[J]. Chinese Journal of Computer-Aided Design and Computer Graphics, 2014, 26(5): 675-686 [21] http://www.caep-scns.ac.cn/TeraVAP.php[EB/OL]. [22] 郑澎, 方维, 徐权, 等. 面向JAUMIN的并行AFT四面体网格生成[J]. 计算机科学与探索, 2018, 12(4):567-574. (Zheng Peng, Fang Wei, Xu Quan, et al. Parallel AFT tetrahedral mesh generation for JAUMIN[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 567-574 doi: 10.3778/j.issn.1673-9418.1611083 [23] http://www.caep-scns.ac.cn/SuperMesh.php[EB/OL]. [24] Lin P T, Shadid J N, Sala M, et al. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling[J]. Journal of Computational Physics, 2009, 228(17): 6250-6267. doi: 10.1016/j.jcp.2009.05.024