Operation stability improvement for synchrotron light sources by tune feedback system
-
Abstract:
Ten Insert Devices (IDs) had been installed in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring. The ID gaps were repeatedly adjusted for the scientific experiments during the user time. The residual quadrupole errors beyond the ID feedforward disturbed the beam optics, including the betatron tune deviations that spoiled machine performance and brightness stability. A tune feedback system was developed and implemented in the SSRF storage ring to resolve the deterioration. The tune stability of ±0.001 in 2 weeks was reached. Another important function of this feedback system is finding out slow drift in the power supplies of dipole or quadrupole by observing the correction current changes in the feedback. To prove this feedback’s feasibility, we compared variations of the beam parameters, including the injection efficiency, the beam life-time, the horizontal beam size and the beta-beatings.
-
Key words:
- tune feedback /
- stability /
- SSRF /
- beam optics /
- beta-beating
摘要:上海同步辐射装置(SSRF)储存环上目前已经安装了十台插入元件(IDs)。在用户时间,插入元件的间隙被反复地调整以进行科学实验。虽然使用了插入件前馈系统,但依然存在扰动束流光学的残余四极场,它会导致束流横向振荡工作点的变化,进而影响机器的性能和同步辐射光亮度的稳定。为此,我们研发了一个工作点反馈系统来解决这个问题,并且已经在上海光源储存环上投入了运行,在两周左右的运行周期内,工作点的稳定度达到了±0.001。这个反馈系统还有另一个重要功能,即可以根据监控反馈系统校正电流的变化趋势来判断二极磁铁电源和四极磁铁电源是否存在慢漂问题。为了验证这个工作点反馈的可行性,我们对使用反馈前后几周的束流参数进行了比较,包括储存环注入效率、束流寿命、水平方向束斑尺寸以及β函数的变化情况(beta-beatings)。
-
关键词:
- 工作点反馈 /
- 稳定性 /
- SSRF /
- 束流光学 /
- beta-beatings
-
Table 1. Beam parameters of the SSRF storage ring
parameter design value measured value beam energy / GeV 3.50 3.50 circumference / m 432 --------- number of cells 20 --------- construction DBA --------- numbers of QF/QD in one cell 4/6 --------- beam current / mA 200−300 240 tune (H, V) 22.22, 11.29 22.220, 11.290 (±0.01) natural emittance / nm·rad 3.89 3.9 coupling 1% 0.3% natural chromaticity (H, V) −55.7, −17.9 -------- corrected chromaticity (H, V) --------- 1.5, 2.5 RMS energy spread 9.845×10−4 0.001 energy loss per turn / MeV 1.435 ~1.45 momentum compaction factor 4.27×10−4 4.2 ×10−4 RF voltage / MV 4.0 4~4.8 RF frequency / MHz 499.654 499.68 synchrotron frequency 0.007 2 0.007 5 -
[1] Heron M T, Abbott M G, Furseman M, et al. Feed-forward and feedback schemes applied to the diamond light source storage ring[C]// Proceedings of IPAC2014, 2014: 1757-1759. [2] Martin I P S, Fielder R, Furseman M, et al. Active optics stabilisation measures at the diamond storage ring[C]//Proceedings of IPAC2014, 2014: 1760-1762. [3] Chao A W, Mess K H, Tigner M, et al. Handbook of accelerator physics and engineering[M]. 2nd ed. World Scientific, 2013. [4] Hou Jie, Tian Shunqiang, Zhang Manzhou, et al. Studies of closed orbit correction and slow orbit feedback for the SSRF storage ring[J]. Chinese Physics C, 2009, 33(2): 145-150. [5] Zhang Manzhou, Wang kun, Zhang Qinglei, et al. Compensations of double elliptical polarization undulator effects on the SSRF storage ring[J]. High Power Laser and Particle Beams, 2017, 29: 075103. [6] Tian Shunqiang, Zhang Manzhou, Zhang Qinglei, et al. Lattice design of the SSRF-U storage ring[C]// Proceedings of IPAC2015, 2015: 304-306. [7] Dai Zhimin, Liu Guimin, Huang Nan. Design of the SSRF storage ring magnet lattice[J]. Nuclear Science and Techniques, 2003, 14(2): 89-92. [8] Zhang Wenzhi, Tian Shunqiang, Zhang Manzhou, et al. Design and first commissioning of a new mode with lower emittance in the SSRF storage ring[J]. Chinese Physics C, 2009, 33(5): 397-400. doi: 10.1088/1674-1137/33/5/016 [9] Tomás R, Aiba M, Franchi A, et al. Review of linear optics measurement and correction for charged particle accelerators[J]. Physical Review Accelerators and Beams, 2017, 20(5): 054801. doi: 10.1103/PhysRevAccelBeams.20.054801 [10] Tian Shunqiang, Zhang Wenzhi, Li Haohu, et al. Linear optics calibration and nonlinear optimization during the commissioning of the SSRF storage ring[J]. Chinese Physics C, 2009, 33(s2): 83-85. [11] Tian Shunqiang, Hou Jie, Chen Guangling, et al. Analysis of sextupole effects on β function beating in the SSRF storage ring[J]. Chinese Physics C, 2008, 32(7): 576-579. doi: 10.1088/1674-1137/32/7/013 [12] Terebilo A. Accelerator modeling with MATLAB[C]// Proceedings of the 2001 Particle Accelerator Conference, 2001: 3203-3205. [13] Chen, Jianhui, Zhang Manzhou, Zhao Zhentang. Orbit response matrix analysis and lattice periodicity restoration of the SSRF storage ring[J]. Chinese Physics C, 2009, 33(9): 785-788. doi: 10.1088/1674-1137/33/9/015 [14] Safranek J. Experimental determination of storage ring optics using orbit response measurements[J]. Nuclear Instruments and Methods in Physics Research A, 1997, 388(1/2): 27-36. doi: 10.1016/S0168-9002(97)00309-4 [15] Liu C, Hulsart R, Michnoff R, et al. Weighted SVD algorithm for closed-orbit correction and 10Hz feedback in RHIC[C]//Proceedings of IPAC2012, 2012: 2906-2908. [16] Leng Yongbin, Yan Yingbing, Yuan Renxian, et al. Betatron tune measurement system for Shanghai Synchrotron Radiation Facility storage ring[J]. High Power Laser and Particle Beams, 2010, 22(10): 2412-2416. doi: 10.3788/HPLPB20102210.2412 [17] Zhao Zhentang, Yin Lixin, Zhang Wenzhi, et al. Progress towards top-up operation at SSRF [C]// Proceedings of IPAC2011, Spain, 2011: 3008-3010. [18] Jena S, Yadav S, Agrawal R K, et al. Stabilization of betatron tune in Indus-2 storage[J]. Chinese Physics C, 2014, 38(6): 067002. doi: 10.1088/1674-1137/38/6/067002 [19] Tian Shunqiang, Hou Jie, Chen Guangling, et al. New chromaticity compensation approach and dynamic aperture increase in the SSRF storage ring[J]. Chinese Physics C, 2008, 32(8): 661-664. [20] Safranek J, Portmann G, Terebilo A. MATLAB-based LOCO[C]// The 8th European Particle Accelerator Conference, 2002. [21] Zhou Xuemei. Measurement of optics for the SSRF storage ring in commissioning[J]. Chinese Physics C, 2009, 33(s2): 78-82. 期刊类型引用(24)
1. 孙仕豪,郑也,于淼,李思源,曹镱,王军龙,王学锋. 基于多纵模振荡种子源的高功率窄线宽光纤激光器关键技术分析及研究现状. 中国光学(中英文). 2024(01): 38-51 . 百度学术
2. 崔国栋,赵鸿,张利明,张大勇,吕华昌. 高功率线偏振窄线宽光纤激光器TMI抑制. 激光与红外. 2024(05): 692-696 . 百度学术
3. 许阳,房强,崔雪龙,赵一柱,丁香栋,许海鑫,陈鲁兵,侯博文,史伟. 1.6 kW 8 GHz线宽线偏振窄线宽全光纤激光器. 中国激光. 2024(13): 87-94 . 百度学术
4. 龙金虎,粟荣涛,常洪祥,侯天悦,常琦,蒋敏,张嘉怡,马阎星,马鹏飞,周朴. 基于空间结构内部锁相的光纤激光相干合成技术. 强激光与粒子束. 2023(04): 101-112 . 本站查看
5. 常洪祥,粟荣涛,龙金虎,常琦,马鹏飞,马阎星,周朴. 全光纤激光阵列主动相位控制技术研究进展. 强激光与粒子束. 2023(04): 53-62 . 本站查看
6. 闫玥芳,陶汝茂,刘玙,李雨薇,张昊宇,楚秋慧,李敏,舒强,冯曦,黄文会,景峰. 基于光纤合束器件的高功率全光纤相干合成技术研究进展与展望. 强激光与粒子束. 2023(04): 63-76 . 本站查看
7. 王勇能,李福建,饶大幸,崔勇,赵晓晖,贺瑞敬,季来林,高妍琦,隋展,陈华才. 紧凑型光谱组束系统中光纤阵列扰动对光束质量的影响分析. 中国激光. 2023(07): 204-214 . 百度学术
8. 周朴,马鹏飞,任帅,陈益沙,刘伟,姚天甫,潘志勇,陈金宝. 高功率窄线宽光纤激光的研究进展与发展趋势. 信息对抗技术. 2023(Z1): 16-36 . 百度学术
9. 常洪祥,靳凯凯,张雨秋,张嘉怡,金坤,李灿,粟荣涛,冷进勇,周朴. 基于光谱滤波的宽谱激光相干合成光程与相位同步控制研究. 光学学报. 2023(17): 189-197 . 百度学术
10. 周朴,粟荣涛,马阎星,吴坚,马鹏飞,李灿,王小林,冷进勇,张雨秋,任帅,常洪祥,龙金虎,王涛,蒋敏,李俊. 主动相位控制光纤激光相干合成技术研究. 光学学报. 2023(17): 13-40 . 百度学术
11. 杨保来,王鹏,奚小明,马鹏飞,王小林,王泽锋. LD泵浦高平均功率、高光束质量掺镱光纤激光振荡器与放大器研究进展. 光学学报. 2023(17): 150-170 . 百度学术
12. 邱樟鹏,王楠,陈子昊,李小婷,李泽标,刘建强,罗又辉,吕启涛,闫培光. 高功率连续绿光激光器的研究进展. 科学通报. 2023(34): 4618-4629 . 百度学术
13. 史伟,付士杰,盛泉,史朝督,张钧翔,张露,姚建铨. 高性能单频光纤激光器研究进展:2017-2021(特邀). 红外与激光工程. 2022(01): 65-78 . 百度学术
14. 龙润泽,张昆,张利明. 反向光纤耦合器反向隔离特性研究. 激光杂志. 2022(01): 70-73 . 百度学术
15. 韩志刚,郑云瀚,王昊业,李方欣,陈佳乐,朱日宏. 6.7 kW全国产化窄线宽三包层光纤激光器. 红外与激光工程. 2022(02): 85-93 . 百度学术
16. 杨保来 ,张汉伟 ,王鹏 ,奚小明 ,王小林 ,许晓军 ,陈金宝 . 单端泵浦光纤放大器获得4 kW单模窄谱激光输出. 强激光与粒子束. 2022(04): 8-9 . 本站查看
17. 程鑫,姜华卫,冯衍. 高功率单频掺铒光纤激光技术研究进展(特邀). 红外与激光工程. 2022(06): 99-110 . 百度学术
18. 阳求柏,沈辉,张磊,李秋瑞,于春雷,漆云凤,胡丽丽. 面向高功率窄线宽激光应用的掺镱石英玻璃光纤研究进展. 激光与光电子学进展. 2022(15): 90-102 . 百度学术
19. 袁纬仪,付敏,李智贤,王泽锋,陈子伦. 一体化光纤滤除器和端帽实现20 kW激光输出. 强激光与粒子束. 2022(11): 5-6 . 本站查看
20. 张建心,杜飞,孙海竹,刘佳玉,李森森,樊心民. 波导激光器的研究进展与展望. 光电技术应用. 2022(06): 28-32 . 百度学术
21. 周朴,粟荣涛,马阎星,马鹏飞,吴坚,李灿,姜曼. 激光相干合成的研究进展:2011—2020. 中国激光. 2021(04): 31-58 . 百度学术
22. 安毅,潘志勇,杨欢,黄良金,马鹏飞,闫志平,姜宗福,周朴. 国产长锥形光纤实现400W单频单模激光输出. 物理学报. 2021(20): 86-92 . 百度学术
23. 盛泉,王盟,史朝督,田浩,张钧翔,刘俊杰,史伟,姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报. 2021(21): 124-130 . 百度学术
24. 周朴,冷进勇,肖虎,马鹏飞,许将明,刘伟,姚天甫,张汉伟,黄良金,潘志勇. 高平均功率光纤激光的研究进展与发展趋势. 中国激光. 2021(20): 7-32 . 百度学术
其他类型引用(10)
-