留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种脉冲电流工况下晶闸管缓冲电路的优化方法

仝玮 李华 傅鹏 王琨 MahmoodUl Hassan 宋执权

仝玮, 李华, 傅鹏, 等. 一种脉冲电流工况下晶闸管缓冲电路的优化方法[J]. 强激光与粒子束, 2020, 32: 025015. doi: 10.11884/HPLPB202032.190280
引用本文: 仝玮, 李华, 傅鹏, 等. 一种脉冲电流工况下晶闸管缓冲电路的优化方法[J]. 强激光与粒子束, 2020, 32: 025015. doi: 10.11884/HPLPB202032.190280
Tong Wei, Li Hua, Fu Peng, et al. A parameter optimization method of snubber circuit of thyristor under pulse current working condition[J]. High Power Laser and Particle Beams, 2020, 32: 025015. doi: 10.11884/HPLPB202032.190280
Citation: Tong Wei, Li Hua, Fu Peng, et al. A parameter optimization method of snubber circuit of thyristor under pulse current working condition[J]. High Power Laser and Particle Beams, 2020, 32: 025015. doi: 10.11884/HPLPB202032.190280

一种脉冲电流工况下晶闸管缓冲电路的优化方法

doi: 10.11884/HPLPB202032.190280
基金项目: 国家重点研发计划项目(2017YFE0300504)
详细信息
    作者简介:

    仝 玮(1993-),男,博士研究生,从事聚变电源失超保护系统研究;tongwei@ipp.ac.cn

    通讯作者:

    宋执权(1975-),男,研究员,从事大功率聚变电源系统及开关技术研究;zhquansong@ipp.ac.cn

  • 中图分类号: TM135

A parameter optimization method of snubber circuit of thyristor under pulse current working condition

  • 摘要: 对脉冲工况下超导磁体失超保护系统的晶闸管阀组缓冲回路参数进行设计和优化。基于晶闸管反向恢复电流的指数衰减模型建立了晶闸管关断时刻的电流数学模型。通过测试实验获得关键参数之间的关系并结合晶闸管性能及系统要求在Matlab中建立晶闸管电流反向恢复模型。考虑关断时刻电流下降率、反向恢复电压峰值等性能指标要求及回路研制费用,提出了一种脉冲工况下晶闸管缓冲回路的参数设计及优化方法。在Matlab中搭建失超保护系统模型,对比优化前后缓冲回路对系统在晶闸管关断时刻电气性能的影响,仿真结果显示,相比于原参数,最优参数下,反向恢复电压峰值降低了11%,反向恢复电压变化率峰值降低了43%。同时,回路制造成本降低为原先的1/7。
  • 图  1  人工过零型失超保护系统换流过程

    Figure  1.  Simplified commutation diagram of quench protection system (QPS)

    图  2  指数型模型波形图

    Figure  2.  Exponential function model

    图  3  脉冲工况下晶闸管测试实验电路图

    Figure  3.  Test circuit for thyristor reverse recovery characteristic

    图  4  等效电路图

    Figure  4.  Equivalent circuit diagram of snubber circuit during the reverse recovery process

    图  5  反向恢复电压峰值随CsRs变化趋势

    Figure  5.  Peak value of Vdmax under various set of Rs and Cs.

    图  6  反向恢复电压变化率峰值随CsRs变化趋势

    Figure  6.  Peak value of dVd/dt under various set of Rs and Cs

    图  7  dVd/dtmaxRs的变化趋势

    Figure  7.  Peak value of dVd/dt as a function of Rs

    图  8  反向恢复电压变化率峰值随CsRs变化趋势

    Figure  8.  Peak value of Vd as a function of Rs and Cs

    图  9  反向恢复电流电压波形对比

    Figure  9.  Comparison of reverse recovery current and voltage waveforms

    表  1  晶闸管反向恢复过程中电气参数数据

    Table  1.   Specific characteristics of thyristor during reverse recovery process

    charge voltage/VIp/AIRM/Adi/dt/ (A·µs−1)Qrr/µC
    1 000 6 622 895 37.10 8 057.3
    1 500 9 935 967 50.96 8 412.8
    2 000 13 250 1 100 76.54 9 049.2
    2 500 16 560 1 206 97.41 9 568.7
    3 000 19 880 1 330 121.22 10 153.0
    3 500 23 190 1 402 135.97 10 505.4
    4 000 26 500 1 523 160.26 11 076.2
    4 500 29 810 1 627 179.44 11 517.1
    5 000 33 160 1 738 198.98 11 962.4
    5 500 36 480 1 846 221.88 12 471.5
    6 000 39 790 1 915 238.76 12 849.6
    6 500 43 090 2 014 256.90 13 244.7
    7 000 46 380 2 132 279.01 13 715.9
    7 500 49 880 2 230 298.37 14 122.1
    下载: 导出CSV

    表  2  RC缓冲回路设计要求

    Table  2.   Design specification of RC snubber circuit for QPS in LSTF

    symbolparametervalue
    L/µHexternal inductance25
    VdRM, VRRM/Vmax. repetitive peak forward and reverse blocking voltage of chosen thyristor5 200
    dVd/dtcrit/(V·µs-1)critical rate of rise of commutating voltage of chosen thyristor(di/dt=500 A/µs, Tvj=125 ℃)3 000
    IRM/Apeak value of reverse recovery current (di/dt=500 A/µs, Tvj=125 ℃)1 825.7
    NSthyristor series number2
    下载: 导出CSV

    表  3  RC的最优参数及对应的电压特性

    Table  3.   The optimum Rs, Cs and corresponding circuit parameters

    symbolparametervalue
    RsSnubber Resistance11.3
    Cs/μFSnubber Capacitance0.8
    Vdmax/VMaximum Reverse Recovery Voltage6 210
    (dVd/dt)max/(V·μs−1)Maximum Vd change rate3 600
    下载: 导出CSV

    表  4  电气参数对比

    Table  4.   Comparison of electrical parameters

    optimum parametersPractical parameters
    IRM /A)1 8151 835
    (di/dt)0/(A·s-1)309×106307×106
    vdmax/V6 1686 960
    (dVd/dt)max /(V·µs-1)3 5986 285
    下载: 导出CSV
  • [1] Song Yuntao, Li Jiangang, Wan Baonian, et al. Concept design of CFETR tokamak machine[J]. IEEE Trans Plasma Science, 2014, 42(3): 503-509. doi: 10.1109/TPS.2014.2299277
    [2] 李华, 宋执权, 汪舒生, 等. 核聚变装置中直流保护开关的研究进展[J]. 中国电机工程学报, 2016, 36:233-239. (Li Hua, Song Zhiquan, Wang Shusheng, et al. Study on DC protection switch for superconducting coils in magnetic confinement fusion device[J]. Proceedings of the CSEE, 2016, 36: 233-239
    [3] Ren Yong, Zhu Jiawu, Gao Xiang, et al. Electromagnetic, mechanical and thermal performance analysis of the CFETR magnet system[J]. Nuclear Fusion, 2015, 55: 093002. doi: 10.1088/0029-5515/55/9/093002
    [4] Wang Shusheng, Song Zhiquan, Fu Peng, et al. Conceptual design of bidirectional hybrid dc circuit breaker for quench protection of the CFETR[J]. IEEE Trans Applied Superconductivity, 2018, 46(5): 1497-1502.
    [5] 李世平, 任亚东, 熊思宇, 等. 150 mm高压脉冲功率晶闸管的研制与应用[J]. 大功率变流技术, 2012, 1(13):13-16. (Li Shiping, Ren Yadong, Xiong Siyu, et al. Development and application of 150 mm high-voltage pulse power thyristors[J]. Control and Information Technology, 2012, 1(13): 13-16
    [6] 董汉彬. 功率晶闸管的暂态热特性研究及应用[D]. 武汉: 华中科技大学, 2012.

    Dong Hanbin. Research and application on instantaneous thermal characteristic of power thyristors. Wuhan: Huazhong University of Science and Technology, 2012
    [7] 岳珂, 刘隆晨, 孙玮, 等. 反向恢复特性在高功率晶闸管检测试验中的应用[J]. 高电压技术, 2017, 43(1):103-109. (Yue Ke, Lu Longchen, Sun Wei, et al. Application of reverse recovery characteristics in high power thyristor testing[J]. High Voltage Engineering, 2017, 43(1): 103-109
    [8] 宋执权. EAST超导托卡马克极向场电源失超保护系统的研制[D]. 北京: 中国科学院研究生院, 2007.

    Song Zhiquan. Research and development of quench protection system in poloidal field power supply system for EAST super-conductive TOKAMAK. Beijing: Graduate University of Chinese Academy of Sciences, 2007
    [9] 温家良, 汤广福, 查鲲鹏, 等. 高压晶闸管阀运行试验方法与试验装置的研究与开发[J]. 电网技术, 2006, 32(21):26-31. (Wen Jialiang, Tang Guangfu, Zha Kunpeng, et al. Operational test method of high voltage thyristor valves and development of its synthetic test equipment[J]. Power System Technology, 2006, 32(21): 26-31 doi: 10.3321/j.issn:1000-3673.2006.21.006
    [10] Lou Lifang, Liou J J. An improved compact model of silicon-controlled rectifier (SCR) for electrostatic discharge (ESD) applications[J]. IEEE Trans Electron Devices, 2008, 55(12): 3517-3524. doi: 10.1109/TED.2008.2006739
    [11] 戴玲, 田书耘, 金超亮, 等. 脉冲功率晶闸管反向恢复特性[J]. 强激光与粒子束, 2016, 28:115001. (Dai Ling, Tian Shuyun, Jin Chaoliang, et al. Reverse recovery characteristics of pulse power thyristor[J]. High Power Laser and Particle Beams, 2016, 28: 115001
    [12] Lee C W, Park S B. Design of a thyristor snubber circuit by considering the reverse recovery process[J]. IEEE Trans Power Electronics, 1988, 42(3): 503-509.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1390
  • HTML全文浏览量:  549
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-31
  • 修回日期:  2019-10-29
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回