留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属基底对石墨烯薄膜阴极气体击穿稳定性影响

王刚 刘胜 潘亚峰 范红艳

王刚, 刘胜, 潘亚峰, 等. 金属基底对石墨烯薄膜阴极气体击穿稳定性影响[J]. 强激光与粒子束, 2020, 32: 025022. doi: 10.11884/HPLPB202032.190297
引用本文: 王刚, 刘胜, 潘亚峰, 等. 金属基底对石墨烯薄膜阴极气体击穿稳定性影响[J]. 强激光与粒子束, 2020, 32: 025022. doi: 10.11884/HPLPB202032.190297
Wang Gang, Liu Sheng, Pan Yafeng, et al. Influence of metal matrix materials on self-breakdown stability of graphene film cathode[J]. High Power Laser and Particle Beams, 2020, 32: 025022. doi: 10.11884/HPLPB202032.190297
Citation: Wang Gang, Liu Sheng, Pan Yafeng, et al. Influence of metal matrix materials on self-breakdown stability of graphene film cathode[J]. High Power Laser and Particle Beams, 2020, 32: 025022. doi: 10.11884/HPLPB202032.190297

金属基底对石墨烯薄膜阴极气体击穿稳定性影响

doi: 10.11884/HPLPB202032.190297
基金项目: 国家高技术研究发展计划项目
详细信息
    作者简介:

    王 刚(1986—),男,博士研究生,从事脉冲功率技术研究;wanggang@nint.ac.cn

  • 中图分类号: TM85

Influence of metal matrix materials on self-breakdown stability of graphene film cathode

  • 摘要: 利用石墨烯二维材料极好的场发射能力和发射稳定性,提出了石墨烯阴极提高气体开关击穿稳定性的技术路线。采用化学气相沉积法和基底腐蚀转移法两种方法制备金属基底石墨烯薄膜阴极。利用扫描电子显微镜和拉曼光谱表征了石墨烯薄膜阴极质量,确认了石墨烯层数和均匀性。实验研究了两种石墨烯薄膜阴极气体开关,在微秒脉冲均匀电场作用下的击穿特性,获得了击穿电压幅值和分散性的变化规律。结果表明:当气体为0.6 MPa N2、电极间距为5 mm时,铜基底石墨烯薄膜阴极平均击穿电压为85.9 kV,相对标准差为3.2%;不锈钢基底石墨烯薄膜阴极平均击穿电压仅为59.8 kV,相对标准差为2.4%。当两种阴极击穿电压均为80 kV时,相对标准差比较,不锈钢基底仅为铜基底的44%。分析认为,不锈钢基底石墨烯薄膜质量优于铜基底,石墨烯薄膜导致阴极表面微观场增强因子更高,表面分布更均匀,在电场作用下场致发射产生均匀稳定的大量初始电子流,降低了气体开关击穿电压,有效提高了击穿稳定性。
  • 图  1  紫铜基底石墨烯薄膜阴极

    Figure  1.  Graphene film/copper matrix cathode

    图  2  不锈钢基底石墨烯薄膜阴极

    Figure  2.  Graphene film/stainless steel matrix cathode

    图  3  紫铜基底石墨烯薄膜SEM图

    Figure  3.  SEM image of graphene film/copper matrix cathode

    图  4  不锈钢基底石墨烯薄膜SEM图

    Figure  4.  SEM image of graphene film/ stainless steel matrix cathode

    图  5  紫铜基底石墨烯薄膜拉曼光谱

    Figure  5.  Raman spectrum of graphene film/copper matrix cathode

    图  6  不锈钢基底石墨烯薄膜拉曼光谱

    Figure  6.  Raman spectrum of graphene film/ stainless steel matrix cathode

    图  7  基于Tesla变压器的百千伏脉冲开关实验平台

    Figure  7.  Test platform based on Tesla transformer for the switch

    图  8  气体开关结构示意图

    Figure  8.  Structural schematic of the switch

    图  9  气体开关静电场仿真

    Figure  9.  Static electric field simulation for the switch

    图  10  开关工作电压波形

    Figure  10.  Working voltage waveform on the switch

    图  11  负载电阻上输出电压波形

    Figure  11.  Output voltage waveform on a resistive load

    图  12  三种阴极气体开关击穿电压随脉冲数变化图

    Figure  12.  UBD versus pulse number for three kinds of cathodes

    图  13  紫铜和不锈钢基底石墨烯阴极气体开关击穿电压随脉冲数变化图

    Figure  13.  UBD versus pulse number for graphene/copper and graphene/stainless steel cathodes

    图  14  三种阴极气体开关随工作气压变化图

    Figure  14.  UBD versus gas pressure for three kinds of cathodes

  • [1] Geim A K. Graphene: status and prospects[J]. Science, 2009, 324: 1530-1534. doi: 10.1126/science.1158877
    [2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
    [3] Nguyen V H. Recent adwances in experimental basic research on graphene and graphene-base nano structures[J]. Adv Nat Sci Nanotechnol, 2016, 7: 023001. doi: 10.1088/2043-6262/7/2/023001
    [4] Wu Zhongshuai, Pei Songfeng, Ren Wencai, et al. Field emission of single-layer graphene films prepared by electrophoretic deposition[J]. Adv Mater, 2009, 21: 1756-1760. doi: 10.1002/adma.200802560
    [5] Deng Jianhua, Zheng Ruiting, Yang Yumei, et al. Excellent field emission characteristics from few-layer graphene-carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition[J]. Carbon, 2012, 50: 4732-4737. doi: 10.1016/j.carbon.2012.05.065
    [6] 柳建龙. 基于石墨烯材料的场发射冷阴极关键技术研究[D]. 成都: 电子科技大学, 2004.

    Liu Jianlong. Research of field emission cold cathodes based on graphene materials. Chengdu: University of Electronic Science and Technology of China, 2004
    [7] Spindt C A, Brodie I, Humphrey L, et al. Physical properties of thin-film field emission cathodes with molybdenum cone[J]. J Appl Phys, 1976, 47: 5248-5263. doi: 10.1063/1.322600
    [8] Mazurek B, Mielcarek W, Warycha J, et al. Field emission from graphene produced with use of chemical vapor deposition method[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(6): 3498-3503. doi: 10.1109/TDEI.2015.005168
    [9] Qian Min, Feng Tao, Ding Hui, et al. Electron field emission from screen-printed grapheme films[J]. Nanotechnology, 2009, 20: 425702-425707. doi: 10.1088/0957-4484/20/42/425702
    [10] Li Xuesong, Cai Weiwei, An Jinho, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. doi: 10.1126/science.1171245
    [11] Faugeras C, Nerriere A, Potemski M, et al. Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study[J]. Appl Rhys Lett, 2008, 92: 011914. doi: 10.1063/1.2828975
    [12] Calizo I, Balandin A A, Bao W, et al. Temperature dependence of the Raman spectra of grapheme and grapheme multilayers[J]. Nano Letters, 2007, 7(9): 2645-2649. doi: 10.1021/nl071033g
    [13] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003.

    Zeng Zhengzhong. Practical introduction to pulse power technology. Xi’an: Shannxi Science and Technology Press, 2003
    [14] Martin J C. Nanosecond pulse techniques[J]. Proceedings of The IEEE, 1992, 80(6): 934-945. doi: 10.1109/5.149456
    [15] 王刚, 张喜波, 王俊杰, 等. 基于Tesla变压器和Blumlein线的低抖动重频脉冲发生器[J]. 强激光与粒子束, 2016, 28:045005. (Wang Gang, Zhang Xibo, Wang Junjie, et al. A low-jitter repetitive pulsed generator based on Tesla transformer and Blumlein pulse forming line[J]. High Power Laser and Particle Beams, 2016, 28: 045005
    [16] 韩小莲, 邱爱慈, 盖同阳. 高电压脉冲气体开关稳定性研究[J]. 强激光与粒子束, 1995, 7(1):81-85. (Han Xiaolian, Qiu Aici, Gai Tongyang. Study of the stability of a high voltage gas switch[J]. High Power Laser and Particle Beams, 1995, 7(1): 81-85
    [17] 吕志忠, 吕志辉, 高娅娜, 等. 粗糙阴极气体火花开关性能的理论研究[J]. 强激光与粒子束, 2010, 22(6):1359-1363. (Lü Zhizhong, Lü Zhihui, Gao Ya’na, et al. Theoretical research on properties of spark gap switch with rough cathode[J]. High Power Laser and Particle Beams, 2010, 22(6): 1359-1363
  • 加载中
图(14)
计量
  • 文章访问数:  1474
  • HTML全文浏览量:  500
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-13
  • 修回日期:  2019-09-20
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回