留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三电极气体火花开关导通电流及其电磁辐射特性

邱永峰 卞立安 刘柱 肖培 蒋建辉 李高升 杨建华 刘金亮

邱永峰, 卞立安, 刘柱, 等. 三电极气体火花开关导通电流及其电磁辐射特性[J]. 强激光与粒子束, 2020, 32: 025006. doi: 10.11884/HPLPB202032.190326
引用本文: 邱永峰, 卞立安, 刘柱, 等. 三电极气体火花开关导通电流及其电磁辐射特性[J]. 强激光与粒子束, 2020, 32: 025006. doi: 10.11884/HPLPB202032.190326
Qiu Yongfeng, Bian Li’an, Liu Zhu, et al. Current and electromagnetic radiation characteristics of three-electrode gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 025006. doi: 10.11884/HPLPB202032.190326
Citation: Qiu Yongfeng, Bian Li’an, Liu Zhu, et al. Current and electromagnetic radiation characteristics of three-electrode gas spark switch[J]. High Power Laser and Particle Beams, 2020, 32: 025006. doi: 10.11884/HPLPB202032.190326

三电极气体火花开关导通电流及其电磁辐射特性

doi: 10.11884/HPLPB202032.190326
基金项目: 电子测试技术重点实验室开放基金项目(6142001180205);广西精密导航技术与应用重点实验室开放基金项目(DH201811)
详细信息
    作者简介:

    邱永峰(1985—),男,博士后,主要从事脉冲功率技术、强电磁脉冲测量、天线新技术等方面的研究;qiu19851219@126.com

  • 中图分类号: TP2

Current and electromagnetic radiation characteristics of three-electrode gas spark switch

  • 摘要: 针对三电极气体火花开关工作时产生的强电磁辐射,首先对开关的导通电流及其电磁辐射进行了理论分析,利用CST电磁仿真软件对气体火花开关开展了静电场仿真研究,分析了开关短程导通时的击穿场强;其次对三电极气体火花开关的导通电流和远场辐射场强进行了实验测量,对实验结果进行分析和总结;最后采用电磁屏蔽方法对开关的强电磁辐射进行了有效抑制。研究结果可以为有关脉冲功率装置的电磁辐射及防护提供参考和借鉴。
  • 图  1  CST静电场仿真

    Figure  1.  Electrostatic field simulation with CST

    图  2  气体火花开关电流波形

    Figure  2.  Current waveform of gas spark switch

    图  3  实验测量布局图

    Figure  3.  Experimental setup in measurement

    图  4  气体火花开关电磁辐射信号

    Figure  4.  Electromagnetic radiation signal of gas spark switch

    图  5  金属屏蔽系统

    Figure  5.  Metal shielding system

  • [1] 程新兵, 刘金亮, 陈蒸, 等. 高电压长寿命型气体火花开关的设计及初步研究[J]. 强激光与粒子束, 2008, 20(10):1753-1756. (Cheng Xinbing, Liu Jinliang, Chen Zhen, et al. Design and primary experiment of high voltage long-life gas spark switch[J]. High Power Laser and Particle Beams, 2008, 20(10): 1753-1756
    [2] 程新兵, 刘金亮, 陈蒸, 等. 一种大电流三电极气体火花开关的工作特性[J]. 高电压技术, 2009, 35(7):1689-1694. (Cheng Xinbing, Liu Jinliang, Chen Zhen, et al. Operating characteristics of a heavy current three -electrode gas spark switch[J]. High Voltage Engineering, 2009, 35(7): 1689-1694
    [3] Li X A, Liu X D, Zeng F H, et al. Study on resistance and energy deposition of spark channel under the oscillatory current pulse[J]. IEEE Transactions on Plasma Science, 2014, 42(9): 2259-2265. doi: 10.1109/TPS.2014.2331346
    [4] Li X A, Liu X D, Zeng F H, et al. Ejection of electrode molten droplet and its effect on the degradation of insulator in gas spark switches[J]. IEEE Trans Plasma Science, 2015, 43(4): 1049-1053. doi: 10.1109/TPS.2015.2408607
    [5] Wu J W, Han R Y, Ding W D, et al. Electrode erosion characteristics of repetitive long-life gas spark switch under airtight conditions[J]. IEEE Trans Plasma Science, 2015, 43(10): 3425-3433. doi: 10.1109/TPS.2015.2428934
    [6] Wu J W, Han R Y, Ding W D, et al. Experimental study of electrode erosion and aging process of a specially designed gas switch under repetitive arc discharge[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(4): 2164-2171. doi: 10.1109/TDEI.2017.006254
    [7] Chen D H, Li L, Yu B, et al. Study on graphite-electrode gas switch applied for pulsed power supply with a 700-kA peak current[J]. IEEE Trans Plasma Science, 2015, 43(10): 3419-3424. doi: 10.1109/TPS.2015.2423563
    [8] Wu J W, Han R Y, Ding W D, et al. Experimental study of self-breakdown voltage statistics in Cu-W electrode spark gap switches[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(4): 2056-2065. doi: 10.1109/TDEI.2017.006266
    [9] Santamaria F, Roman F. Experimental study of a submillimeter spark-gap[J]. IEEE Trans Plasma Science, 2013, 41(4): 985-992. doi: 10.1109/TPS.2013.2249531
    [10] Zhang J, Van Heesch B, Beckers F, et al. Breakdown voltage and recovery rate estimation of a supercritical nitrogen plasma switch[J]. IEEE Trans Plasma Science, 2014, 42(2): 376-383. doi: 10.1109/TPS.2013.2294756
    [11] Hogg M G, Timoshkin I V, Mcgregor S J, et al. Polarity effects on breakdown of short gaps in a point-plane topology in air[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(4): 1815-1822. doi: 10.1109/TDEI.2015.005029
    [12] Wang X X, Luo H Y, Hu Y. Numerical simulation of the gas discharge in a gas peaking switch[J]. IEEE Trans Plasma Science, 2007, 35(3): 702-708. doi: 10.1109/TPS.2007.896963
    [13] Reddy C S, Sharma A, Mittal K C. Experimental investigations into pulse-charged spark gap recovery times and influencing factors[J]. IEEE Trans Plasma Science, 2016, 44(3): 331-337. doi: 10.1109/TPS.2015.2509162
    [14] Li X A, Pei Z H, Ma C Q, et al. Prefire properties of high pressure gas spark switches for fast linear transformer drivers[J]. IEEE Trans Plasma Science, 2018, 46(12): 4099-4108. doi: 10.1109/TPS.2018.2864121
    [15] Chen Y J, Mankowski J J, Walter J W, et al. Jitter and recovery rate of a triggered spark gap with high pressure gas mixtures[C]. Pulsed Power Conference, 2009, 244 – 249
    [16] Cheng X B, Liu J L, Zhou S P, et al. Surface creepage of high-voltage self-breakdown gas switch[J]. IEEE Trans Plasma Science, 2009, 37(5): 678-682. doi: 10.1109/TPS.2009.2016100
    [17] Deng J J, Xie W P, Feng S P, et al. Initial performance of the primary test stand[J]. IEEE Trans Plasma Science, 2013, 41(10): 2580-2583. doi: 10.1109/TPS.2013.2274154
    [18] Larsson A, Yap D, Au J, et al. Laser triggering of spark gap switches[J]. IEEE Trans Plasma Science, 2014, 42(10): 2943-2947. doi: 10.1109/TPS.2013.2297161
    [19] Cheng X B, Liu J L, Qian B L, et al. Research of a high-current repetitive triggered spark-gap switch and its application[J]. IEEE Trans Plasma Science, 2010, 38(3): 516-522. doi: 10.1109/TPS.2009.2038381
    [20] Geng J Y, Yang J H, Cheng X B, et al. The development of high-voltage repetitive low-jitter corona stabilized triggered switch[J]. Review of Scientific Instruments, 2018, 89(4): 044705. doi: 10.1063/1.5011089
    [21] Dai H Y, Li L, Wu H B, et al. Characteristics of N2/O2 reaction in spark gap switch: The effect of high-current pulsed arc[J]. IEEE Trans Dielectrics and Electrical Insulation, 2019, 26(2): 492-500. doi: 10.1109/TDEI.2019.007691
    [22] Fan X L, Liu J L, Lv X M. Research on the electromagnetic fields radiating during the operation of intense electron-beam accelerator[J]. Laser and Particle Beams, 2013, 31(01): 149-154. doi: 10.1017/S0263034612001012
    [23] Siew W H, Howat S D, Chalmers I D. Radiated interference from a high voltage impulse generator[J]. IEEE Trans Electromagnetic Compatibility, 1996, 38(4): 600-604. doi: 10.1109/15.544316
    [24] 郭硕鸿. 电动力学[M]. 2版. 北京:高等教育出版社, 1997.

    Guo Shuohong. Electrodynamics. 2nd ed. Beijing: Higher Education Press, 1997
    [25] Martin T H, Guenther A H, Kristiansen M. J C Martin on pulsed power[M]. New York: Plenum press, 1996.
  • 加载中
图(5)
计量
  • 文章访问数:  1773
  • HTML全文浏览量:  676
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-01
  • 修回日期:  2019-10-29
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回