留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同顺序中子/γ辐照对双极器件电流增益的影响

王凯 吕学阳 吴锟霖 冯加明 范晓强 李俊杰 杨桂霞 鲁艺 邱东 邹德慧

王凯, 吕学阳, 吴锟霖, 等. 不同顺序中子/γ辐照对双极器件电流增益的影响[J]. 强激光与粒子束, 2020, 32: 044001. doi: 10.11884/HPLPB202032.190333
引用本文: 王凯, 吕学阳, 吴锟霖, 等. 不同顺序中子/γ辐照对双极器件电流增益的影响[J]. 强激光与粒子束, 2020, 32: 044001. doi: 10.11884/HPLPB202032.190333
Wang Kai, Lü Xueyang, Wu Kunlin, et al. Effects of different sequential neutron/gamma irradiation on current gain of bipolar devices[J]. High Power Laser and Particle Beams, 2020, 32: 044001. doi: 10.11884/HPLPB202032.190333
Citation: Wang Kai, Lü Xueyang, Wu Kunlin, et al. Effects of different sequential neutron/gamma irradiation on current gain of bipolar devices[J]. High Power Laser and Particle Beams, 2020, 32: 044001. doi: 10.11884/HPLPB202032.190333

不同顺序中子/γ辐照对双极器件电流增益的影响

doi: 10.11884/HPLPB202032.190333
基金项目: 国家自然科学基金项目(11605169)
详细信息
    作者简介:

    王 凯(1993—),男,硕士研究生,主要从事半导体器件参数测量分析;1342117283@qq.com

    通讯作者:

    邹德慧(1979—),女,硕士,副研究员,主要研究方向为半导体器件物理;32859603@qq.com

  • 中图分类号: TL814

Effects of different sequential neutron/gamma irradiation on current gain of bipolar devices

  • 摘要: 利用CFBR-Ⅱ快中子反应堆(中国第二座快中子脉冲堆)和60Co装置开展不同顺序的中子/γ辐照双极晶体管的实验。在集电极-发射极电压恒定条件下,测量了双极晶体管电流增益随集电极电流的变化曲线,研究不同顺序中子/γ辐照对双极晶体管电流增益的影响。分析实验结果发现,集电极-发射极电压一定时,集电极电流极低情况下电流增益退化比较大,随集电极电流增加电流增益逐渐减小;就实验选中的两类晶体管而言,先中子后γ辐照造成双极晶体管电流增益的退化程度大于先γ后中子辐照,而且PNP型晶体管比NPN型晶体管差异更明显。本文进行了双极晶体管电离/位移协同辐照效应相关机理的初步探讨。
  • 图  1  实验流程图

    Figure  1.  Experimental flow chart

    图  2  A组-NPN型双极晶体管电流增益hFE随集电极电流IC的曲线

    Figure  2.  Curves of current gain hFE vs collector current IC of A-NPN BJTs

    图  3  B组-PNP型双极晶体管电流增益hFE随集电极电流IC的变化曲线

    Figure  3.  Curves of current gain hFE vs collector current IC of B-PNP BJTs

    图  4  NPN型晶体管工作于正向有源区时电子流和空穴流示意图

    Figure  4.  Diagram of electron flow and hole flow when NPN transistor is working in positive active region

    图  5  A组-NPN型和B组-PNP双极晶体管基极电流IB随集电极电流IC的曲线

    Figure  5.  Curves of base current IB vs. collector current IC of A-NPN BJTs and B-PNP BJTs

    图  6  先γ后中子入射辐照效应示意图(以PNP型双极晶体管为例)

    Figure  6.  Schematic diagram of irradiation effect of neutron first followed by γ incidence (taking PNP bipolar transistor as an example)

    图  7  先中子后γ入射辐照效应示意图(以PNP型双极晶体管为例)

    Figure  7.  Schematic diagram of irradiation effect of γ first followed by neutron incidence ( taking PNP bipolar transistor as an example)

  • [1] 王晨辉, 陈伟, 刘岩, 等. 基区表面势对栅控横向PNP晶体管中子位移损伤的影响[J]. 强激光与粒子束, 2015, 27:114002. (Wang Chenhui, Chen Wei, Liu Yan, et al. Influence of base surface potential on neutron displacement damage of gate-controlled lateral PNP bipolar transistors[J]. High Power Laser and Particle Beams, 2015, 27: 114002 doi: 10.11884/HPLPB201527.114002
    [2] Gorelick J L, Ladbury R, Kanchawa L, et al. The effects of neutron irradiation on gamma sensitivity of linear integrated circuits[J]. IEEE Trans Nucl Sci, 2004, 51(6): 3679-3685. doi: 10.1109/TNS.2004.839245
    [3] 李兴冀. 星用双极型器件带电粒子辐照效应及损伤机理[D]. 哈尔滨: 哈尔滨工业大学, 2010: 37-66.

    Li Xingji. Radiation effects and damage mechanisms caused by charged particles on bipolar devices used for space craft. Harbin: Harbin Institute of Technology, 2010: 37-66
    [4] 刘超铭. 双极晶体管辐射损伤效应及深能级缺陷研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 98-135.

    Liu Chaoming. Radiation damage effects and deep level defects in bipolar junction transistor. Harbin: Harbin Institute of Technology, 2013: 98-135
    [5] Barnaby H J, Smith S K, Schrimpf R D, et al. Analytical model for proton radiation effects in bipolar devices[J]. IEEE Trans Nucl Sci, 2003, 49(6): 2643-2649.
    [6] Barnaby H J, Schrimpf R D, Sternberg A L, et al. Proton radiation response mechanisms in bipolar analog circuits[J]. IEEE Trans Nucl Sci, 2001, 48(6): 2074-2080. doi: 10.1109/23.983175
    [7] Li Xingji, Liu Chaoming, Rui Erming, et al. Simultaneous and sequential radiation effects on NPN transistors induced by protons and electrons[J]. IEEE Trans Nucl Sci, 2012, 59(3): 625-633. doi: 10.1109/TNS.2012.2191572
    [8] Li Xingji, Geng Hongbin, Liu Chaoming, et al. Combined radiation effects of protons and electrons on NPN transistors[J]. IEEE Trans Nucl Sci, 2010, 57(2): 831-836. doi: 10.1109/TNS.2009.2039355
    [9] Wang Chenhui, Bai Xiaoyan, Chen Wei, et al. Simulation of synergistic effects on lateral PNP bipolar transistors induced by neutron and gamma irradiation[J]. Nucl Instrum Meth A, 2015.
    [10] Song Yu, Zhang Ying, Liu Yang, et al. Mechanism of synergistic effects of neutron-and gamma-ray-radiated PNP bipolar transistors[J]. ACS Appl Electron Mater, 2019.
    [11] Sze S M, Kwok K N. Physics of semiconductor devices[M]. 3rd ed. New York: Wiley-Interscience, 2006.
    [12] 叶迟凡. 晶体管电流放大系数β与集电极电流IC的关系[J]. 怀化师专学报(自然科学版), 1987(5):64-67. (Ye Chifan. The relationship between transistor current amplification factor beta and collector current IC[J]. Journal of Huaihua Teachers College (Natural Science Edition), 1987(5): 64-67
    [13] Claeys C, Simoen E. Radiation effects in advanced semiconductor materials and devices[M]. Springer-Berlin Heidelberg GmbH, 2002.
    [14] Kosier S L, Shrimpf R D, Nowlin R N, et al. Charge separation for bipolar transistors[J]. IEEE Trans Nucl Sci, 1993, 40(6): 1276-1285. doi: 10.1109/23.273541
    [15] Neamen D A. 半导体物理与器件[M]. 4版. 北京: 电子工业出版社, 2013.

    Neamen D A. Semiconductor physics and devices: basic principles [M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2013
  • 加载中
图(7)
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  517
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-04
  • 修回日期:  2020-01-09
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回