Comparison of insulation properties of several liquid dielectrics under nanosecond pulses
-
摘要:
利用自行研制的纳秒脉冲实验平台(输出脉冲前沿30 ns,半宽百纳秒)和标准介电强度测试仪,对变压器油、甘油、去离子水、Galden HT200四种液体绝缘介质在直流与纳秒脉冲下的击穿特性进行了实验研究与结果比对,结果表明:在直流与纳秒脉冲下,Galden HT200均具有最高的击穿场强,且两种情况下均比变压器油高出40%以上;纳秒脉冲下,Galden HT200与变压器油的击穿场强均提高6.5~7倍,Galden HT200击穿过程耗时最短(ns量级),其次是变压器油(20 ns),然后依次为甘油(45 ns)和去离子水(70 ns);多次放电后,粘度系数最大的甘油更易在电极间隙处聚集碳化放电产物,粘度系数较小的Galden HT200和去离子水则无明显痕迹,但二者放电过程会产生明显的冲击波,多次放电后易造成间隙电极松动。
Abstract:Based on the self-developed nanosecond pulsed test platform with output voltage of 30 ns risetime and 100 ns half width, and the standard dielectric strength DC tester, the breakdown characteristics of four liquid dielectrics (transformer oil, glycerol, deionized water and Galden HT200) under DC and nanosecond pulses were experimentally studied and compared. The following conclusions were obtained: (1)Under both DC and nanosecond pulse, Galden HT200 has the highest breakdown field strength which is more than 40% higher than that of the transformer oil. (2) Under the nanosecond pulse, the breakdown field strength of Galden HT200 and transformer oil both increased by 6.5-7 times than those under DC. And it took the shortest time(nanosecond scale) for Galden HT200 to breakdown, followed by the transformer oil(20 ns), then glycerol(45 ns) and deionized water(70 ns). (3) After multiple breakdowns, a lot of carbonized discharge products were accumulated at the electrode gap in the glycerol which has the largest viscosity coefficient. However, there are no obvious breakdown traces in the Galden HT200 and deionized water, which both have the smaller viscosity coefficient. But obvious shock waves were observed in the Galden HT200 and deionized water, which make the gap electrodes loose.
-
表 1 四种液体介质直流实验击穿数据
Table 1. Breakdown data of four liquid dielectrics under DC
dielectric media relative permittivity breakdown votage/kV relative deviation/% breakdown field strength/(kV/mm) transformer oil 1.87 39.3±4.7 12 15.7 Galden HT200 1.83 55.7±6.8 12.2 22.3 glycerol 31 5.3±0.07 1.3 2.1 deionized water 80 5.2±0.02 0.4 2.08 表 2 四种液体介质纳秒脉冲实验击穿数据
Table 2. Breakdown data of four liquid dielectrics under the nanosecond pulse
dielectric media breakdown votage/kV relative deviation/% breakdown field strength/(kV/mm) transformer oil 262.7±13.34 5.07 105.1 Galden HT200 378.8±37.3 9.8 151.2 glycerol 186.3±6.98 3.75 74.5 deionized water 128.1±9.63 7.5 51.2 表 3 几种液体介质在20 °C时的密度与粘度
Table 3. Density and viscosity of several liquid dielectrics at 20 °C
density/(g/cm2) viscosity/(m2/s) deionized water / Galden HT200 1 1.01×10−6 transformer oil 0.895 (5−10)×10−6 glycerol 1.25 (0.458−1.19)×10−3 -
[1] Ba um, C E. Reminiscences of high-power electromagnetic[J]. IEEE Transactions on electromagnetic compatibility, 2007, 49(2): 211-218. doi: 10.1109/TEMC.2007.897147 [2] 刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6. (Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002 [3] 邓建球, 郝翠. 强电磁脉冲耦合与电源防护研究[J]. 微波学报, 2017, 33(6):85-89. (Deng Jianqiu, Hao Cui. Research on powerful electromagnetic pulse coupling and power source protection[J]. Journal of Microwaves, 2017, 33(6): 85-89 [4] Shi Lihua. An overview of the HEMP research in China[J]. IEEE Transactions on Electromagnetic Compatibility, 2013(3): 422-430. [5] Wraight A, Prather W D. Developments in early-time (E1) high-altitude electromagnetic pulse(HEMP) test methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 492-499. doi: 10.1109/TEMC.2013.2241442 [6] Giri D V, Prather W D. High-altitude electromagnetic pulse(HEMP) risetime evolution of technology and standards exclusive for E1 environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 1-8. doi: 10.1109/TEMC.2013.2266211 [7] 谢彦召, 王赞基, 王群书, 等. 基于频域幅度谱数据重建电磁脉冲时域波形[J]. 强激光与粒子束, 2004, 16(3):320-324. (Xie Yanzhao, Wang Zanji, Wang Qunshu, et al. Reconstruction of electromagnetic pulse wave based on the amplitude spectrum data[J]. High Power Laser and Particle Beams, 2004, 16(3): 320-324 [8] 朱长青, 刘尚合, 魏明. 强电磁脉冲的有效带宽、测量带宽及来自上升时间的影响[J]. 强激光与粒子束, 2005, 17(1):99-103. (Zhu Changqing, Liu Shanghe, Wei Ming. High-EMP effective bandwidth, measurement bandwidth and effect from rising time[J]. High Power Laser and Particle Beams, 2005, 17(1): 99-103 [9] Nyffeler M, Jaquier A, Reusser B, et al. VERIFY, a threat level NEMP simulator with a 1 ns risetime[C]//America Electromagnetic. 2006. [10] 张帆, 何鹏军, 孔亮, 等. 宽带强电磁脉冲模拟器发展及设计研究[J]. 强激光与粒子束, 2018, 30:013206. (Zhang Fan, He Pengjun, Kong Liang, et al. Survey and design study of mesoband high power electromagnetic pulse radiator[J]. High Power Laser and Particle Beams, 2018, 30: 013206 [11] 张晋琪, 蒋兴亮, 陈志刚. 液体介质快脉冲电压下击穿特性研究[J]. 强激光与粒子束, 2006, 18(6):1053-1056. (Zhang Jinqi, Jiang Xingliang, Chen Zhigang. Characteristics study of short-pulsed dielectric breakdown in liquids[J]. High Power Laser & Particle Beams, 2006, 18(6): 1053-1056 [12] 黄思思. 操作冲击电压作用下液体电介质的电场及空间电荷分布特性研究[D]. 重庆: 重庆大学, 2013.Huang Sisi. Study on electric field and space charge distribution characteristics in liquid dielectric under switching impulse voltage. Chongqing: Chongqing University, 2013 [13] 徐健. 高储能密度液体介质脉冲绝缘特性研究[D]. 长沙: 国防科学技术大学, 2014.Xu Jian. Study on the pulsed insulating characteristics of high energy storage density liquid dielectrics. Changsha: National University of Defense Technology, 2014 [14] Martin T H, Guenther A H. J. C. Martin on pulsed power[M]. New York and London: Plenum Press, 1996. [15] 荀涛, 杨汉武, 张建德, 等. 加速器电水锤数值模拟与实验研究[J]. 强激光与粒子束, 2010, 22(2):425-429. (Xun Tao, Yang Hanwu, Zhang Jiande, et al. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators[J]. High Power Laser and Particle Beams, 2010, 22(2): 425-429