留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于场路仿真的PCIe电磁干扰分析及优化设计

杨会 宋航 肖夏

杨会, 宋航, 肖夏. 基于场路仿真的PCIe电磁干扰分析及优化设计[J]. 强激光与粒子束, 2020, 32: 043202. doi: 10.11884/HPLPB202032.190360
引用本文: 杨会, 宋航, 肖夏. 基于场路仿真的PCIe电磁干扰分析及优化设计[J]. 强激光与粒子束, 2020, 32: 043202. doi: 10.11884/HPLPB202032.190360
Yang Hui, Song Hang, Xiao Xia. PCIe electromagnetic interference analysis and optimization design based on co-simulation of field and circuit[J]. High Power Laser and Particle Beams, 2020, 32: 043202. doi: 10.11884/HPLPB202032.190360
Citation: Yang Hui, Song Hang, Xiao Xia. PCIe electromagnetic interference analysis and optimization design based on co-simulation of field and circuit[J]. High Power Laser and Particle Beams, 2020, 32: 043202. doi: 10.11884/HPLPB202032.190360

基于场路仿真的PCIe电磁干扰分析及优化设计

doi: 10.11884/HPLPB202032.190360
详细信息
    作者简介:

    杨 会(1990—),女,硕士研究生,主要研究方向为电磁兼容;693113741@qq.com

  • 中图分类号: O441.4

PCIe electromagnetic interference analysis and optimization design based on co-simulation of field and circuit

  • 摘要: 采用电磁仿真技术,提前评估PCB的电磁兼容设计是否合理,当对PCB进行电磁兼容测试时,减少其电磁干扰不满足GMW 3097标准的情况出现。首先对PCB进行3D电磁场仿真,再与高速串行计算机扩展总线标准模块内芯片的通用模拟电路仿真模型的电路仿真动态链接,进行场路协同仿真。实验验证表明,该仿真方法的精度在6 dBμV之内,满足PCB加工工艺的误差和实验测试的不确定度,符合仿真精度要求。通过该仿真方法评估PCB的电磁干扰强度以及优化PCB的设计,将高速串行计算机扩展总线标准模块上的33 Ω电阻替换为磁珠后,该PCB在1.6 GHz处的电磁干扰强度降低了13.4 dB。根据CISPR 25标准规定的1-m法进行测试,PCB的电磁干扰变为−3.4 dBμV,低于GMW 3097标准要求,从而验证了该措施的有效性。
  • 图  1  PCB上PCIe模块电路图

    Figure  1.  Circuit diagram of PCIe module on PCB

    图  2  PCB上电流驱动信号传输示意图

    Figure  2.  Schematic diagram of current drive signal transmission on PCB

    图  3  PCIe模块上的时钟的时域信号示意图

    Figure  3.  Schematic diagram of the time domain signals of the clock on the PCIe module

    图  4  PCIe模块上的时钟的频域信号示意图

    Figure  4.  Schematic diagram of the frequency domain signal of the clock on the PCIe module

    图  5  自由空间中的无限小电偶极子的辐射

    Figure  5.  Radiation of an infinitesimal electric dipole in free space

    图  6  PCB上PCIe模块的仿真模型图

    Figure  6.  Simulation model of the PCIe module on the PCB

    图  7  PCIe模块的仿真数据与实验数据对比图

    Figure  7.  Comparison of simulation data and experimental data of PCIe module

    图  8  PCB仿真结果图

    Figure  8.  PCB simulation results

    图  9  磁珠等效电路图

    Figure  9.  Equivalent circuit diagram of magnetic bead

    表  1  GMW 3097标准中对EMI的要求

    Table  1.   The EMI requirements for the GMW 3097 standard

    namefrequency/MHzEMI limit
    GPS1 567 − 1 574linearly decreased from 44 dBμV to 4 dBμV
    1 574 − 1 5764 dBμV
    1 576 − 1 583linearly increased from 4 dBμV to 44 dBμV
    GLONASS1 598 − 1 6064 dBμV
    下载: 导出CSV
  • [1] Veropoulos G P, Papakanellos P J, Vlachos C. A probabilistic approach for the susceptibility assessment of a straight PCB trace excited by random plane-wave fields[J]. IEEE Trans Electromagn Compat, 2018, 60(1): 258-265. doi: 10.1109/TEMC.2017.2704911
    [2] Shantala, Sudheer M L. Analysis of electromagnetic interference radiations from the PCB traces[C]//International Conference on Recent Trends in Electrical, Control and Communication. 2018: 74-78.
    [3] Huang C Y, Chen C H, Greene C. Using parametric design to reduce the EMI of electronics products—example of medical-grade touch panel computer[J]. Prog Electromagn Res C, 2019, 89(1): 13-26.
    [4] Tang Qiu, Wang Yaonan, Christopoulos C. Simulation and research of the PCB vias effects[C]//International Conference on Natural Computation. 2007: 110-114.
    [5] Pan S, Fan J. Characterization of via structures in multilayer printed circuit boards with an equivalent transmission-line model[J]. IEEE Trans Electromagn Compat, 2012, 54(5): 1077-1086. doi: 10.1109/TEMC.2012.2187664
    [6] Archambeault B, Brench C, Connor S. Review of printed-circuit-board level EMI/EMC issues and tools[J]. IEEE Trans Electromagn Compat, 2010, 52(2): 455-461. doi: 10.1109/TEMC.2010.2044182
    [7] Carobbi C F M, Izzo D. Evaluation and improvement of the reproducibility of CISPR 25 ALSE test method[J]. IEEE Trans Electromagn Compat, 2018, 60(4): 1069-1077. doi: 10.1109/TEMC.2017.2780220
    [8] IEC CISPR 25, Vehicles, boats and internal combustion engines—radio disturbance characteristics—limits and methods of measurement for the protection of on-board receivers[S]. 2015.
    [9] GMW 3097, General specification for electrical/electronic components and subsystems, electromagnetic compatibility[S]. 2015.
    [10] 赵阳, 颜伟, 赵波, 等. 电路辐射干扰机理诊断与特性估计[J]. 电工技术学报, 2010, 25(10):6-13. (Zhao Yang, Yan Wei, Zhao Bo, el at. EMI radiated noise diagnosis and estimation for HF circuits[J]. Transactions of China Electrotechnical Society, 2010, 25(10): 6-13
    [11] 邱剑. 差分线对的PCB设计要点[J]. 通信技术, 2010, 43(6):221-223. (Qiu Jian. Essentials of differential pairs in PCB design[J]. Communications Technology, 2010, 43(6): 221-223 doi: 10.3969/j.issn.1002-0802.2010.06.076
    [12] 赵志超. 高速差分传输线模型的分析与设计[D]. 西安: 西安电子科技大学, 2012: 19-25.

    Zhao Zhichao. Analysis and design of high-speed differential transmission line model. Xi'an: Xidian University, 2012: 19-25
    [13] Kuehn S, Pfeifer S, Kochali B, et al. A novel automated phasor measurement system for validated and traceable EMC/EMI near-field analysis[J]. IEEE Electromagn Compat Mag, 2016, 5(2): 41-47.
    [14] Zhang Jiachen, Wei Xingchang, Yang Rui, et al. An efficient probe calibration based near-field-to-near-field transformation for EMI diagnosis[J]. IEEE Trans Antennas Propagat, 2019, 67(6): 4141-4147. doi: 10.1109/TAP.2019.2902741
    [15] Mikki S, Sarkar D, Antar Y M M. On localized antenna energy in electromagnetic radiation[J]. Prog Electromagn Res M, 2019, 79(1): 1-10.
    [16] Connor S, Archambeault B, Mondal M. The impact of common mode currents on signal integrity and EMI in high-speed differential data links[C]//IEEE International Symposium on Electromagnetic Compatibility. 2008: 1-5.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  523
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-12-30
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回