留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能强流脉冲电子束源关键技术研究

荀涛 杨汉武 张军 刘列 张建德

荀涛, 杨汉武, 张军, 等. 高性能强流脉冲电子束源关键技术研究[J]. 强激光与粒子束, 2020, 32: 025003. doi: 10.11884/HPLPB202032.190375
引用本文: 荀涛, 杨汉武, 张军, 等. 高性能强流脉冲电子束源关键技术研究[J]. 强激光与粒子束, 2020, 32: 025003. doi: 10.11884/HPLPB202032.190375
Xun Tao, Yang Hanwu, Zhang Jun, et al. Development of high performance, high-current pulsed electron beam sources[J]. High Power Laser and Particle Beams, 2020, 32: 025003. doi: 10.11884/HPLPB202032.190375
Citation: Xun Tao, Yang Hanwu, Zhang Jun, et al. Development of high performance, high-current pulsed electron beam sources[J]. High Power Laser and Particle Beams, 2020, 32: 025003. doi: 10.11884/HPLPB202032.190375

高性能强流脉冲电子束源关键技术研究

doi: 10.11884/HPLPB202032.190375
基金项目: 高功率微波技术重点实验室基金项目(614260502010417);国家自然科学基金项目(61771482)
详细信息
    作者简介:

    荀 涛(1982—),男,博士,副研究员,主要从事强流真空电子学和强场微波光子学相关技术研究;xtao_0301@hotmail.com

  • 中图分类号: TL503

Development of high performance, high-current pulsed electron beam sources

  • 摘要: 强流脉冲电子束源是高功率微波系统的核心部件之一,针对未来应用需求,亟需从绝缘、束流输运和热管理等多个方面提升强流束源技术性能。介绍了国防科技大学在高功率微波源用强流真空电子束源方面的研究进展。针对高功率微波管保真空需求,基于陶瓷金属钎焊,设计并研制了一种强场陶瓷真空界面,耐压大于600 kV、平均绝缘场强达到44 kV/cm、耐受脉宽大于80 ns,重复频率运行稳定;研制了一种基于SiC纳米线的强流电子束源冷阴极,在90 kV/cm的场条件下获得了1.17 kA/cm2的束流密度,相比传统天鹅绒阴极,SiC纳米线阴极的宏观电稳定性、发射均匀性及运行寿命均得到显著提高;针对相对论返波管,研制基于螺旋水槽型的强流电子束收集极,克服了高比能和低流速的矛盾,耐受热流密度达到1012 W/m2,能够满足系统长脉冲、高重复频率运行要求。
  • 图  1  典型高功率微波系统组成

    Figure  1.  Typical layout of high-power microwave system

    图  2  一种同轴馈电型陶瓷真空界面

    Figure  2.  A disk type ceramic-metal interface with coaxial power supply

    图  3  驱动微波源负载的绝缘结构模型及静电场模拟结果

    Figure  3.  Electro-static simulation results of the insulation structure

    图  4  陶瓷真空界面典型重复频率测试结果

    Figure  4.  Typical repetitive results of the ceramic insulation structure

    图  5  SiC纳米线微观结构及阴极实物

    Figure  5.  Structure of SiC nano-wire

    图  6  SiC纳米线阴极与常规阴极典型比较结果

    Figure  6.  Comparision of SiC nano-wires and velvet cathodes

    图  7  两种阴极重复频率运行稳定性比较

    Figure  7.  Comparision of stability of the two cathodes under repetitive operation

    图  8  收集极典型温度历史曲线模拟结果

    Figure  8.  Temperature evolution of the collector

    图  9  连续运行10 s后的温度分布(hc=3000 W·m−2·K−1

    Figure  9.  Temperature distribution after 10 s continuous operation

    图  10  螺旋水道典型流体模拟结果

    Figure  10.  Typical fluid simulation results of the spiral flow channel

    图  11  收集极耐受长脉冲(150 ns)、30 Hz典型电压电流波形(300 个脉冲)

    Figure  11.  The applied pulsed power on the collector (150 ns, 30 Hz, and 300 pulses)

  • [1] Benford J, Swegle J A, Schamiloglu E. High power microwaes[M]. 3rd ed. London: Taylor & Francis Group, 2015.
    [2] Walter J W, Lynn C F, Dickens J C, et al. Operation of a sealed-tube-vircator high-power-microwave source[J]. IEEE Trans Plasma Science, 2012, 40(6): 1618-1621. doi: 10.1109/TPS.2012.2192454
    [3] Xun Tao, Yang Hanwu, Zhang Jiande, et. al A ceramic radial insulation structure for a relativistic electron beam vacuum diode[J]. Review of Scientific Instruments, 2008, 79: 063303. doi: 10.1063/1.2936884
    [4] Xun Tao, Zhang Jiande, Yang Hanwu, et al. A distributed pumping model for a repetitive operated magnetically insulated transmission line oscillator[J]. Journal of Applied Physics, 2013, 113: 164505. doi: 10.1063/1.4803056
    [5] Xun Tao, Fan Yuwei, Yang, Hanwu, et al. A vacuum-sealed, giga-watt class, repetitively pulsed high-power microwave source[J]. Journal of Applied Physics, 2017, 121: 234502. doi: 10.1063/1.4986632
    [6] Xun Tao, Zhang Jiande, Yang Han-Wu, et al. Hydrodynamic loading of ceramic components due to pulsed discharge in water[J]. IEEE Trans Plasma Science, 2009, 37(10): 1975-1979. doi: 10.1109/TPS.2009.2016201
    [7] Xun Tao, Yang Hanwu, Zhang Jiande. A high-vacuum high-electric-field pulsed power interface based on a ceramic insulator[J]. IEEE Trans Plasma Science, 2015, 43(12): 4130-4135. doi: 10.1109/TPS.2015.2497276
    [8] Krasik Y E, Yarmolich D, Gleizer J Z, et al. Pulsed plasma electron sources[J]. Physics of Plasmas, 2009, 16(5): 7103.
    [9] Liu Guozhi, Sun Jun, Shao Hao, et al. Research on an improved explosive emission cathode[J]. Journal of Physics D: Applied Phyics, 2009, 42(12): 5204-5209.
    [10] Zhang Jun, Jin Zhenxing, Yang Jianhua, et al. Recent advance in long-pulse HPM sources with repetitive operation in S-, C-, and X-bands[J]. IEEE Trans Plasma Science, 2011, 39(6): 1438-1445. doi: 10.1109/TPS.2011.2129536
    [11] Shiffler D, Haworth M, Cartwright K, et al. Review of cold cathode research at the Air Force Research Laboratory[J]. IEEE Trans Plasma Science, 2008, 36(3): 718-728. doi: 10.1109/TPS.2008.926227
    [12] Levine J S, Harteneck B D. Repetitively pulsed relativistic klystron amplifier[J]. Applied Physics Letter, 1994, 65: 2133-2135. doi: 10.1063/1.112813
    [13] Xun Tao, Yang Hanwu, Zhang Jiande, et al. Effects of vacuum pressures on the performance of a velvet cathode under repetitive high-current pulse discharges[J]. Vacuum, 2010, 85: 322-326. doi: 10.1016/j.vacuum.2010.07.004
    [14] Xun Tao, Zhang Jiande, Yang Hanwu, et al. Characteristics of a velvet cathode under high repetition rate pulse operation[J]. Physics of Plasmas, 2009, 16: 103106. doi: 10.1063/1.3254043
    [15] Xun Tao, Zhao Xuelong, Li Gongyi, et al. High-current, pulsed electron beam sources with SiC nanowire cathodes[J]. Vacuum, 2015, 125: 81-84.
    [16] Xun Tao, Zhang Jiande, Li Gongyi, et al. Performance of a SiC-nanowire-based explosive-emission pulsed plasma electron source[J]. Applied Physics Express, 2016, 9: 106001. doi: 10.7567/APEX.9.106001
    [17] Friedman M, Myers M C, Chan Y, et al. Properties of ceramic honeycomb cathodes[J]. Applied Physics Letter, 2008, 92: 141501. doi: 10.1063/1.2904637
    [18] Dunaevsky A, KrasikYa E, Feisteiner J, et al. Electron diode with a large area ferroelectric plasma cathode[J]. Journal of Applied Physics, 2001, 90(8): 3689-3698. doi: 10.1063/1.1402149
    [19] KrasikYa E, Gleizer J Z, Yarmolich D, et al. Characterization of the plasma on dielectric fiber (velvet) cathodes[J]. Journal of Applied Physics, 2005, 98: 093308. doi: 10.1063/1.2126788
    [20] 梁玉钦, 邵浩, 孙钧, 等. 引导磁场对收集极中电子能量沉积的影响[J]. 强激光与粒子束, 2014, 25:063010. (Liang Yuqin, Shao Hao, Sun Jun, et al. Influence of guiding magnetic field on energy deposition of electrons in collector[J]. High Power Laser and Particle Beams, 2014, 25: 063010
    [21] 荀涛, 杨汉武, 张自成, 等. 重复频率运行强流电子束收集极热特性[J]. 强激光与粒子束, 2011, 22(11):3064-3068. (Xun Tao, Yang Hanwu, Zhang Zicheng, et al. Thermal characteristics of repetitively operated high-current beam collector[J]. High Power Laser and Particle Beams, 2011, 22(11): 3064-3068
    [22] 霍少飞, 孙钧, 梁玉钦, 等. 不锈钢电子束收集极的损伤能量密度阈值[J]. 强激光与粒子束, 2014, 26:063008. (Huo Shaofei, Sun Jun, Liang Yuqin, et al. Damage threshold of energy density of stainless steel electron beam collector[J]. High Power Laser and Particle Beams, 2014, 26: 063008
    [23] Ju Jinchuan, Fan Yuwei, Zhong Huihuang, et al. An improved X-band magnetically insulated transmission line oscillator[J]. Physics of Plasmas, 2009, 16: 073103. doi: 10.1063/1.3160625
    [24] Cai Dan, Liu Lie, Ju Jinchuan, et al. Simulative research on the anode plasma dynamics in the high-power electron beam diode[J]. Physics of Plasmas, 2015, 22: 073108. doi: 10.1063/1.4926580
    [25] Mesyats G A. Cathode phenomena in a vacuum discharge: The breakdown, the spark and the Arc[M]. Moscow: Nauka, 2000.
    [26] Xun Tao, Yang Hanwu, Zhang Jun, et al. Properties of an intensive relativistic electron beam collector under repetitive pulse operation[J]. IEEE Trans Plasma Science, 2016, 44(6): 957-962. doi: 10.1109/TPS.2016.2556942
    [27] Li GongYi, Li Xiaodong, Chen Zhongdao, et al. Large areas of centimeters-long SiC nanowires synthesized by pyrolysis of a polymer precursor by a CVD route[J]. Journal of Physics and Chemistry C, 2009, 113: 17655-17660. doi: 10.1021/jp904277f
    [28] Shultis J K, Faw R E. Fundamentals of nuclear science and engineering[M]. New York: Dekker, 2002.
  • 加载中
图(11)
计量
  • 文章访问数:  1451
  • HTML全文浏览量:  745
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 修回日期:  2019-12-03
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回