留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳秒脉冲放电处理有机染料废水的实验研究

仇聪颖 管显涛 刘振 朱安娜 闫克平

仇聪颖, 管显涛, 刘振, 等. 纳秒脉冲放电处理有机染料废水的实验研究[J]. 强激光与粒子束, 2020, 32: 025010. doi: 10.11884/HPLPB202032.190390
引用本文: 仇聪颖, 管显涛, 刘振, 等. 纳秒脉冲放电处理有机染料废水的实验研究[J]. 强激光与粒子束, 2020, 32: 025010. doi: 10.11884/HPLPB202032.190390
Qiu Congying, Guan Xiantao, Liu Zhen, et al. Degradation of organic dyes by nanosecond pulsed discharge plasma[J]. High Power Laser and Particle Beams, 2020, 32: 025010. doi: 10.11884/HPLPB202032.190390
Citation: Qiu Congying, Guan Xiantao, Liu Zhen, et al. Degradation of organic dyes by nanosecond pulsed discharge plasma[J]. High Power Laser and Particle Beams, 2020, 32: 025010. doi: 10.11884/HPLPB202032.190390

纳秒脉冲放电处理有机染料废水的实验研究

doi: 10.11884/HPLPB202032.190390
基金项目: 国家重点研发项目(2017YFC0307403)
详细信息
    作者简介:

    仇聪颖(1994—),男,硕士研究生,研究方向为等离子体水处理应用;21728028@zju.edu.cn

    通讯作者:

    刘 振(1978—),男,副教授,研究方向为脉冲功率和等离子体的应用;zliu@zju.edu.cn

  • 中图分类号: X791

Degradation of organic dyes by nanosecond pulsed discharge plasma

  • 摘要: 随着印染行业的快速发展,印染废水的排放与日俱增。由于废水中的有机物具有成分复杂、难以降解的特点,若未经有效处理直接排放,会对生态环境造成严重的污染和危害。试验设计了一种多针-网式反应器循环处理有机组分为酸性红73(AR73)的模拟废水,其采用自行设计的基于TLT(Transmission Line Transformer)的高压重频纳秒脉冲电源驱动。电源可以产生峰值电压为50 kV,脉宽40 ns,上升沿20 ns的纳秒脉冲信号,工作频率可达500 Hz。试验考察了峰值电压、放电频率、染料初始质量浓度及作用时间等因素对AR73降解效果的影响。为评价处理效果,采用紫外分光光度法分别测量了废水中剩余染料浓度、过氧化氢浓度等指标。结果表明,在初始浓度30 mg/L,循环流量3.4 L/min,放电间距30 mm,峰值电压44.26 kV,放电频率200 Hz条件下处理30 min,AR73降解率可以达到83.20%,单次脉冲注入能量为11.73 mJ,过氧化氢浓度为47.36 μmol/L,反应器脱色能效(G50)可以达到31.07 g·kW−1·h−1。增大放电电压可以进一步提高AR73降解率,溶液中活性物质浓度提高,但是能量效率有所下降。
  • 图  1  电晕放电试验装置示意图

    Figure  1.  Schematic diagram of the corona discharge reactor experimental setup

    图  2  水处理反应器结构示意图

    Figure  2.  Schematic diagram of the reactor for water treatment

    图  3  酸性红73标准曲线

    Figure  3.  Standard curve of AR73

    图  4  电压与电流波形

    Figure  4.  Typical waveforms of output voltage and current

    图  5  放电图片

    Figure  5.  Typical photograph of the corona discharge

    图  6  不同交流输入下储能电容电压和放电峰值电压

    Figure  6.  Charging voltage and peak voltage with different AC input

    图  7  不同放电电压下酸性红73降解率随时间的变化曲线

    Figure  7.  Evolution of AR73 degradation efficiency with treatment time under various discharge voltages

    图  8  不同放电电压下过氧化氢浓度随时间的变化曲线

    Figure  8.  Evolution of H2O2 concentration with treatment time under various discharge voltages

    图  9  不同放电电压下AR73降解率随能量密度变化曲线

    Figure  9.  Effects of Esi on degradation of AR73 under various discharge voltages

    图  10  不同放电频率下酸性红73降解率随时间的变化曲线

    Figure  10.  Evolution of AR73 degradation efficiency with treatment time under various discharge frequencies

    图  11  不同频率下的单次脉冲能量

    Figure  11.  Relation between energy per pulse and with discharge frequency

    图  12  不同放电频率下过氧化氢浓度随时间的变化曲线

    Figure  12.  Evolution of H2O2 concentration with treatment time under various discharge frequencies

    图  13  不同放电频率下AR73降解率随能量密度变化曲线

    Figure  13.  Effects of Esi on degradation of AR73 under various discharge frequencies

    图  14  不同初始质量浓度下酸性红73降解率随时间的变化曲线

    Figure  14.  Effects of initial concentration on the degradation of AR73 with treatment time

    图  15  不同初始质量浓度下能量效率随时间的变化曲线

    Figure  15.  Effects of initial concentration on the energy efficiency with treatment time

  • [1] 李家珍. 染料, 染色工业废水处理[M]. 北京: 化学工业出版社, 1997.

    Li Jiazhen. Dyes, dyeing industrial wastewater treatment. Beijing: Chemical Industry Press, 1997
    [2] Yang Shiying, Wang Ping, Yang Xin, et al. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179(1/3): 552-558.
    [3] Wang Q, Gao F, Yuan X, et al. Electrochemical studies on the binding of a carcinogenic anthraquinone dye, Purpurin (C.I.58 205) with DNA[J]. Dyes and Pigments, 2010, 84(3): 213-217. doi: 10.1016/j.dyepig.2009.09.004
    [4] Chequer F M D, Angeli J P F, Ferraz E R A, et al. The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells[J]. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 676(1): 83-86.
    [5] Gao J, Wang X, Hu Z, et al. Plasma degradation of dyes in water with contact glow discharge electrolysis[J]. Water Research, 2003, 37(2): 267-272. doi: 10.1016/S0043-1354(02)00273-7
    [6] 闫金霞, 雷庆铎, 王燕. 铁屑-烟道灰内电解法处理模拟分散大红GS染料废水[J]. 化工环保, 2010, 30(3):196-198. (Yan Jinxia, Lei Qingduo, Wang Yan. Treatment of simulated dye wastewater containing disperse Scarlet GS by scrap iron-flue dust internal electrolysis process[J]. Environmental Protection of Chemical Industry, 2010, 30(3): 196-198 doi: 10.3969/j.issn.1006-1878.2010.03.003
    [7] Francis, Lu ck. Wet air oxidation: past, present and future[J]. Catalysis Today, 1999, 53: 81-91. doi: 10.1016/S0920-5861(99)00112-1
    [8] Thornton T D, Ladue D E, Savage P E. Phenol oxidation in supercritical water: Formation of dibenzofuran, dibenzo-p-dioxin, and related compounds[J]. Environmental Science and Technology, 1991, 25(8): 1507-1510. doi: 10.1021/es00020a023
    [9] Fu F, Wang Q, Tang B. Effective degradation of C.I. Acid Red 73 by advanced Fenton process[J]. Journal of Hazardous Materials, 2010, 174(1/3): 17-22.
    [10] Crittenden J C, Liu J, Hand D W, et al. Photocatalytic oxidation of chlorinated hydrocarbons in water[J]. Water Research, 1997, 31(3): 429-438. doi: 10.1016/S0043-1354(96)00267-9
    [11] 张旋, 王启山. 高级氧化技术在废水处理中的应用[J]. 水处理技术, 2009, 35(3):18-22. (Zhang Xuan, Wang Qishan. Application of advanced oxidation technologies in wastewater treatment[J]. Technology of Water Treatment, 2009, 35(3): 18-22
    [12] 王应红. 低温等离子体化学及其应用[J]. 乐山师范学院学报, 2007, 22(5):25-28. (Wang Yinghong. Low temperature plasma chemistry and application[J]. Journal of Leshan Normal University, 2007, 22(5): 25-28 doi: 10.3969/j.issn.1009-8666.2007.05.013
    [13] 刘丹, 张连成, 黄逸凡, 等. 双杆介质阻挡放电降解酸性红73废水[J]. 化工进展, 2018, 37(9):3640-3648. (Liu Dan, Zhang Liancheng, Huang Yifan, et al. Degradation of Brilliant Crocein wastewater by double-rod dielectric barrier discharge[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3640-3648
    [14] Magureanu M, Bradu C, Piroi D, et al. Pulsed corona discharge for degradation of methylene blue in water[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1): 51-64. doi: 10.1007/s11090-012-9422-8
    [15] Yan K, Veldhuizen V. Flue gas cleaning by pulse corona streamer[R]. 93-E-272, 1993.
    [16] Yan K, Liu Z. An industrial streamer corona plasma system for gas cleaning[J]. IEEE Trans Plasma Science, 2006, 34(5): 2426-2433. doi: 10.1109/TPS.2006.881278
    [17] Yan K, Van Heesch E J M, Pemen A J M, et al. A high-voltage pulse generator for corona plasma generation[J]. IEEE Trans Industry Applications, 2002, 38(3): 866-872. doi: 10.1109/TIA.2002.1003442
    [18] Venkata S S, Krishnamurthy S. Transient electronics: pulsed circuit technology[J]. IEEE Power and Energy Magazine, 2003, 1(2): 64-64. doi: 10.1109/MPAE.2003.1192028
    [19] 王松松, 杨汉武. 一种四级传输线脉冲变压器的初步研究[J]. 强激光与粒子束, 2009, 21(4):633-636. (Wang Songsong, Yang Hanwu. Preliminary study of a 4-stage transmission line transformer[J]. High Power Laser and Particle Beams, 2009, 21(4): 633-636
    [20] Hoeben W F L M, Van Veldhuizen E M, Rutgers W R, et al. The degradation of aqueous phenol solutions by pulsed positive corona discharges[J]. Plasma Sources Science and Technology, 2002, 9(3): 361-369.
  • 加载中
图(15)
计量
  • 文章访问数:  1565
  • HTML全文浏览量:  785
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-30
  • 修回日期:  2019-11-01
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回