A novel adjustable aperture for beam current controlling at China-ADS low energy beam transport line
-
摘要:
为了实现超导直线加速器束流强度的连续可调,并满足加速器在线稳定可靠运行,针对我国加速器驱动次临界系统(C-ADS)低能束流传输线(LEBT)的束流强度调控,提出了一种新型的可调限束光阑。可调限束光阑采用两个相对旋转的镜像对称转芯,转芯的孔径在某一范围内可以实现连续变化,以刮除不需要的外部粒子,提高束流品质,降低束损,最重要的是可实现束流强度的在线连续可调,并满足圆形束的要求。仿真和试验结果表明,在0~10 mA范围内,可以有效地卡掉不需要的外部粒子束流,并实现束流强度的在线连续调节。该装置为质子直线加速器提供了一种方便的束流调试方法,能够满足ADS直线加速器稳定可靠的在线运行。
-
关键词:
- 可调光阑 /
- 束流调试 /
- 低能束流传输线 /
- 中国加速器驱动次临界系统
Abstract:A novel adjustable aperture is developed for the low energy beam transport line (LEBT) of the China Accelerator Driven Subcritical System (C-ADS). Two relatively rotating mirror-symmetry cores are adopted for the adjustable aperture to scrape unwanted outer particles, improve the beam quality and reduce the beam losses, and most of all, realize continuously tunable beam current and meet the requirement of round beam. The results of simulation and test show that the unwanted outer particles can be cut away and the beam current can be adjusted continuously online within the range of 0 to 10 mA. This device provides a convenient beam tuning method for the proton linear accelerator, which can satisfy the stable and reliable online operation of C-ADS linear accelerator.
-
Key words:
- adjustable aperture /
- beam commissioning /
- LEBT /
- C-ADS
-
Table 1. The beam parameters at the outlet of the LEBT
parameter/unit before scraping after scraping emittance εx/(π·mm·mrad) 0.207 0.173 TWISS αx 0.908 1.120 TWISS βx/(mm/π·mrad) 0.047 0.058 emittance εy/(π·mm·mrad) 0.207 0.173 Twiss αy 0.910 1.110 Twiss βy/(mm/π·mrad) 0.047 0.058 -
[1] Zhan Wenlong, Xu Hushan. Advanced fission energy program-ADS transmutation system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27: 375-381. [2] Wang Jing, Huang Jian-Long, He Yuan, et al. Multi-physics analysis of the RFQ for Injector SchemeⅡof C-ADS driver linac[J]. Chinese Physics C, 2014, 38(10): 107005. doi: 10.1088/1674-1137/38/10/107005 [3] Niu Haihua, Li Youtang, He Yuan, et al. The mechanical design and fabrication of 162.5 MHz buncher for China accelerator driven sub-critical system injector II[J]. Nuclear Engineering and Technology, 2017, 49: 1071-1078. doi: 10.1016/j.net.2017.03.003 [4] Wu Q, Zhang Z M, Sun L T, et al. A 2.45 GHz intense proton source and low energy beam transport system for China Initiative Accelerator Driven Sub-Critical reactor system[J]. Review of Scientific Instruments, 2014, 85: 02A703. doi: 10.1063/1.4824804 [5] Yang Y, Zhang Z M, Wu Q, et al. A low energy beam transport system for proton beam[J]. Review of Scientific Instruments, 2013, 84: 033306. doi: 10.1063/1.4796096 [6] Yang Yao, Zhang Zimin, Zhang Wenhui, et al. Study on beam emittance growth induced by spherical aberration of solenoid lens[J]. Atomic Energy Science and Technology, 2013, 47(12): 2336-2340. [7] Celona L, Allegra L, Amato A, et al. Preliminary commissioning results of the proton source for ESS at INFN-LNS[C]// Proc of IPAC. 2016: 2628-2631. [8] Eshraqi M, Danared H, Jansson A, et al. ESS linac beam physics design update[C]// Proc of IPAC. 2016: 947-950. [9] Weissman L, Berkovits D, Arenshtam A, et al. SARAF phase I linac in 2012[J]. Journal of Instrumentation, 2014, 9: T05004. [10] Kai D, Florian K, Christian P. Performance of the SARAF ion source[C]// Proc of PAC07, 2007, TUPAN009: 1407-1409. [11] Weissman L, Berkovits D, Eliyahu I, et al. The state of the SARAF LINAC Project[C]// Proc of LINAC. 2010: 679-683. [12] Wu Qi, Jia Huan, Ma Hongyi, et al. Research of emittance matching on the low energy beam transport line for ADS proton LINAC[J]. Nuclear Physics Review, 2015, 32: 5-9. [13] Chen Weilong. LEBT design based on beam loss control[D]. Beijing: University of Chinese Academy of Sciences, 2016