Measurement signal processing technology for magnetic axis of solenoid based on pulsed tuat-wire method
-
摘要: 针对螺线管磁轴测量中的悬丝位置、测量信号失真、磁轴偏轴和磁轴倾斜信号的分离数据处理要求等问题,采用一种高偏置消除的信号检测与测量方法,并对探测器采用了相关的恒定驱动技术,进一步提高了信号产生的稳定性及抗干扰能力,研制了一种可以获得比较直接的悬丝振动信号的测量系统,解决了单纯采用交流耦合隔直滤波放大器或带通滤波放大器不能获得完全准确的测量信号的问题,确保了在较高的直流偏置下获得没有畸变的较小测量信号,消除了测量信号中低频分量基线倾斜及其中起伏的影响,并实现了磁轴偏移和磁轴倾斜信号的分离,极大地提高了螺线管线圈磁轴的测量灵敏度,实际测试结果显示测量灵敏度提高约1个量级。Abstract: In measurement of magnetic axis of solenoid, there are some key difficulties to overcome, such as precision measurement of tuat-wire vibration and position, reducing measurement signal distortion, and separative data processing for offset and tilt signal in magnetic axis of solenoid. One kind of signal detect and measurement principle of extracting the useful faintness signal via subtracting the high offset level signal from the total measurement signal is adopted to meet the above need. The method of constant current driving the detector is also adopted to obtain more stable and anti-jamming signal. The measurement system has been developed for directly obtaining the pure vibration signal of the tuat-wire. The problems of obtaining completely exact measurement signal by simply using an AC coupling amplifier or band-pass filter are resolved and the faint signal can be obtained without aberration. The influence produced by tilt and ups-and-downs in low frequency component of base line signal is eliminated ulteriorly. The separative data processing for offset and tilt signal is also achieved to some extent. The measurement sensitivity has been improved maximumly by about an order of magnitude.
-
图 3 磁轴倾斜测量波形及对比
Figure 3. Measured waveform of tilt and its compare with the work of Wang Ke et al, 2015[6]
图 4 磁轴偏移测量波形及对比
Figure 4. Measured waveform of offset and its compare with the work of Wang Ke et al, 2015[6]
-
[1] 丁伯南, 邓建军, 王华岑, 等. “神龙一号”直线感应电子加速器[J]. 高能物理与核物理, 2005, 29(6):604-610. (Ding Bonan, Deng Jianjun, Wang Huacen, et al. Dragon-I linear induction electron accelerator[J]. High Energy Physics and Nuclear Physics, 2005, 29(6): 604-610 doi: 10.3321/j.issn:0254-3052.2005.06.015 [2] 石金水, 邓建军, 章林文, 等. 神龙二号加速器及其关键技术[J]. 强激光与粒子束, 2016, 28:010201. (Shi Jinshui, Deng Jianjun, Zhang Linwen, et al. Dragon - II accelerator and its key technology[J]. High Power Laser and Particle Beams, 2016, 28: 010201 doi: 10.11884/HPLPB201628.010201 [3] Melton J G, Burns M J, Honaberger D J. Pulsed taut-wire measurement of the magnetic alignment of the ITS induction cells[C]// Proceedings of Particle Accelerator Conference. 1991. [4] Bonnafond C, Villate D. Alignment techniques for the high current AIRIX accelerator[C]//Proceedings of Particle Accelerator Conference. 1999, 2: 1381-1383. [5] 章文卫, 李洪, 王华岑, 等. 采用脉冲悬丝法测量强流加速腔聚焦场磁轴[J]. 强激光与粒子束, 1996, 8(2):203-208. (Zhang Wenwei, Li Hong, Wang Huacen, et al. Pulsed wire magnetic field alignment measurements on a high current induction cell[J]. High Power Laser and Particle Beams, 1996, 8(2): 203-208 [6] 王科, 代志勇, 廖树清, 等. 用于线圈磁轴测量的滤波放大电路的设计改进[J]. 太赫兹科学与电子信息学报, 2015, 13(5):775-778. (Wang Ke, Dai Zhiyong, Liao Shuqing, et al. Design and improvement of filter circuit for solenoid magnet axis measurement[J]. Journal of Terahertz Science and Electronic Information Technology, 2015, 13(5): 775-778 doi: 10.11805/TKYDA20150518.775 [7] Arbelaez D, Kwan J W, Lipton T M, et al. Magnetic alignment of pulsed solenoids using the pulsed wire method[C]// Proceedings of Particle Accelerator Conference. 2011: 2087-2089.