留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱飞秒激光晶体研究进展

孙士家 娄斐 林州斌 钟德高 滕冰

孙士家, 娄斐, 林州斌, 等. 掺镱飞秒激光晶体研究进展[J]. 强激光与粒子束, 2020, 32: 011009. doi: 10.11884/HPLPB202032.190451
引用本文: 孙士家, 娄斐, 林州斌, 等. 掺镱飞秒激光晶体研究进展[J]. 强激光与粒子束, 2020, 32: 011009. doi: 10.11884/HPLPB202032.190451
Sun Shijia, Lou Fei, Lin Zhoubin, et al. Progress of the research on Yb3+-doped femtosecond laser crystals[J]. High Power Laser and Particle Beams, 2020, 32: 011009. doi: 10.11884/HPLPB202032.190451
Citation: Sun Shijia, Lou Fei, Lin Zhoubin, et al. Progress of the research on Yb3+-doped femtosecond laser crystals[J]. High Power Laser and Particle Beams, 2020, 32: 011009. doi: 10.11884/HPLPB202032.190451

掺镱飞秒激光晶体研究进展

doi: 10.11884/HPLPB202032.190451
基金项目: 国家自然科学基金项目(61705231,51972181);山东省自然科学基金重大基础研究项目(ZR2018ZB0650)
详细信息
    作者简介:

    孙士家(1987—),男,硕士,工程师,从事新型激光晶体研究;ssj1027@126.com

    通讯作者:

    滕 冰(1968—),女,博士,教授,从事新型光电功能晶体材料研究;5108tb@163.com

  • 中图分类号: O799

Progress of the research on Yb3+-doped femtosecond laser crystals

  • 摘要: 飞秒激光在军事、医学、通讯、加工等领域有着重要应用,已经成为新世纪激光技术领域的研究热点。得益于激光二极管(LD)的快速发展,以LD作为泵浦源成为新型全固态飞秒激光器的发展趋势。Yb3+离子掺杂的激光晶体材料因其独特的能级结构、宽带吸收与发射等优势,逐渐成为LD直接泵浦并实现1.0 μm飞秒激光输出的重要增益介质。详细总结了当前掺Yb3+飞秒激光晶体的研究进展,分析了目前存在的主要问题,给出了未来飞秒激光晶体发展的两个建议方向:高效率小功率飞秒激光和大功率高能量飞秒激光。以Yb3+:Sr3Y2(BO3)4晶体为例,详细研究了其晶体生长、光谱、连续与飞秒激光性能,并实现了中心波长在1 060 nm处脉宽为116 fs,平均输出功率为1.08 W,光光转换效率为33.1%的高效率飞秒激光输出,表明Yb3+:Sr3Y2(BO3)4及其同体系晶体是一类优异的高效率飞秒激光材料。
  • 图  1  采用提拉法生长的原子数分数为3%的Yb:SYB晶体[89]

    Figure  1.  3at.%Yb:SYB crystals grown by Czochralski method[89]

    图  2  原子数分数为3%的Yb:SYB晶体的偏振吸收截面[89]

    Figure  2.  Polarized absorption cross-sections of 3at.%Yb:SYB crystal[89]

    图  3  原子数分数为3%的Yb:SYB晶体的偏振发射截面[89]

    Figure  3.  Polarized emission cross-sections of 3at.%Yb:SYB crystal[89]

    图  4  原子数分数为3%的Yb:SYB晶体的荧光衰减曲线[89]

    Figure  4.  Fluorescence decay curve of 3at.%Yb:SYB crystal[89]

    图  5  激光实验装置示意图[89]

    Figure  5.  Schematic diagram of laser experimental setup[89]

    图  6  原子数分数为3%的Yb:SYB晶体连续激光泵浦与输出功率[89]

    Figure  6.  CW laser output versus incident pump powers of 3at.%Yb:SYB crystal[89]

    图  7  原子数分数为3%的Yb:SYB晶体激光发射谱图[89]

    Figure  7.  Laser emission spectra of 3at.%Yb:SYB crystal[89]

    图  8  克尔透镜锁模激光实验装置示意图[90]

    Figure  8.  Experimental setup of Kerr-lens mode-locked laser[90]

    图  9  原子数分数为3%的Yb:SYB晶体平均输出功率与脉冲宽度[90]

    Figure  9.  Average output power and pulse duration of 3at.%Yb:SYB laser[90]

    图  10  原子数分数为3%的Yb:SYB晶体脉冲激光自相关曲线与光谱图[90]

    Figure  10.  Autocorrelation trace and spectrum of 3at.%Yb:SYB pulse laser[90]

    图  11  采用提拉法生长的原子数分数为11%的Yb:SYB晶体[91]

    Figure  11.  11at.%Yb:SYB crystal grown by Czochralski method[91]

    图  12  SESAM锁模激光实验装置示意图[91]

    Figure  12.  Experimental setup of the SESAM mode-locked laser[91]

    图  13  原子数分数为11%的Yb:SYB晶体锁模激光平均输出功率与泵浦功率[91]

    Figure  13.  Average output versus incident pump powers of 11at.%Yb:SYB crystal[91]

    图  14  原子数分数为11%的Yb:SYB晶体锁模激光光谱与自相关曲线[91]

    Figure  14.  Autocorrelation traces and laser emission spectra of 11at.%Yb:SYB mode-locked pulses[91]

    图  15  采用提拉法生长的原子数分数为6.3%的Yb:SGB晶体[94]

    Figure  15.  6.3at.%Yb:SGB crystal grown by Czochralski method[94]

    图  16  原子数分数为6.3%的Yb:SGB晶体的结构特征[94]

    Figure  16.  The structure of 6.3at.%Yb:SGB crystal[94]

    图  17  室温下原子数分数为6.3%的Yb:SGB晶体的偏振吸收截面和荧光光谱[94]

    Figure  17.  Polarized absorption cross-sections and fluorescence spectra of 6.3at.%Yb:SGB at 300 K[94]

    图  18  原子数分数为6.3%的Yb:SGB晶体77 K温度下荧光光谱以及Yb3+离子能级图[94]

    Figure  18.  Fluorescence spectra of 6.3at.%Yb:SGB crystal at 77 K and energy level schema of Yb3+ ions[94]

    图  19  原子数分数为6.3%的Yb:SGB晶体的荧光衰减曲线[94]

    Figure  19.  Fluorescence decay curve of 6.3at.%Yb:SGB crystal[94]

    图  20  原子数分数为6.3%的Yb:SGB晶体的偏振发射截面与增益截面[94]

    Figure  20.  Polarized emission and gain cross-sections of 6.3at.%Yb:SGB crystal[94]

    图  21  原子数分数为6.3%的Yb:SGB晶体的连续激光输出功率与吸收泵浦功率[94]

    Figure  21.  CW output versus absorbed pump powers of 6.3at.%Yb:SGB crystal[94]

    图  22  原子数分数为6.3%的Yb:SGB晶体连续激光发射谱[94]

    Figure  22.  Laser emission spectra of 6.3at.%Yb:SGB crystal[94]

    表  1  掺Yb3+飞秒激光晶体的光谱与激光参数

    Table  1.   Spectra and laser parameters of Yb3+-doped femtosecond laser crystals

    matrix crystalabsorption spectrum FWHM/nmemission spectrum FWHM/nmwavelength/nmpulse width/fsaverage power/mWoptical-optical conversion efficiency/%reference
    YCa4O(BO3)3 3 44 1 055
    1 050
    35
    46
    36
    46
    2.6
    4.2
    [14-15]
    GdCa4O(BO3)3 3 44 1 045
    1 030
    90
    350
    40
    2
    [16-17]
    Sr3Y(BO3)3 6 60 1 062
    1 068
    69
    86
    80
    300
    7.3
    12
    [18-19]
    YAl3(BO3)4 22 25 1 050 87 61 2.5 [20-21]
    LaSc3(BO3)4 25 33 1 053 67
    58
    39
    73
    2
    3.7
    [22-23]
    KY(WO4)2 3.5 24 1 039
    1 033
    65
    114
    22
    5 000
    2
    33.3
    [24-25]
    KGd(WO4)2 3.5 25 1 040
    1 038
    67
    162
    3 000
    8 800
    10
    32.1
    [26-27]
    CaGdAlO4 6 60 1 063
    1 050
    32
    94
    90
    12 500
    2.5
    20
    [28-29]
    CaYAlO4 11 61 1 059
    1 045
    33
    156
    36
    740
    2.9
    19.2
    [30-31]
    Y3Al5O12 4 9 1 060
    1 051
    35
    100
    107
    151
    2.3
    3.2
    [32-33]
    SrY4(SiO4)3O 7 73 1 066
    1 068
    70
    94
    156
    110
    3.9
    3.1
    [34-35]
    Y2SiO5 6 48 1 041
    1 044
    122
    198
    410
    2 610
    2.7
    17.4
    [36]
    Lu2SiO5 6 67 1 059 233
    260
    1 100
    2 600
    7.3
    17.4
    [36]
    Gd2SiO5 6 72 1 031 343 396 7.9 [37]
    CaF2 18 71 1 049 65
    68
    35
    2 400
    3.2
    33
    [38-39]
    Na:CaF2 24/5 65/15 1 039 175
    190
    352
    510
    7.8
    6.6
    [40]
    YYF4 11 40 1 033
    1 031
    170
    210
    130
    250
    8.3
    14.3
    [41]
    YLiF4 11 40 1 028
    1 024
    196
    233
    54
    120
    1.4
    2.5
    [42]
    下载: 导出CSV
  • [1] 王继扬. 人工晶体[J]. 科学观察, 2018, 12(5):23-26. (Wang Jiyang. Synthetic crystals[J]. Science Focus, 2018, 12(5): 23-26
    [2] 林尊琪, 陈卫标, 楼祺洪, 等. 我国近期激光前沿若干重要进展评述[J]. 中国科学: 技术科学, 2013, 43(9):961-978. (Lin Zunqi, Chen Weibiao, Lou Qihong, et al. Review on the recent progress of laser frontiers in China[J]. Scientia Sinica Techologica, 2013, 43(9): 961-978
    [3] 沈德忠, 张书峰, 陈建荣, 等. 人工晶体的进展与发展动向[J]. 人工晶体学报, 2012, 41(S):1-5. (Shen Dezhong, Zhang Shufeng, Chen Jianrong, et al. Progress and developing trend of synthetic crystals[J]. Journal of Synthetic Crystals, 2012, 41(S): 1-5
    [4] Moulton P F. Ti-doped sapphire: tunable solid-state laser[J]. Optics News, 1982, 8(6): 9-9. doi: 10.1364/ON.8.6.000009
    [5] Moulton P F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of America B: Optical Physics, 1986, 3(1): 125-133. doi: 10.1364/JOSAB.3.000125
    [6] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44. doi: 10.1364/OL.16.000042
    [7] 王继扬, 吴以成. 光电功能晶体材料研究进展[J]. 中国材料进展, 2010, 29(10):1-15. (Wang Jiyang, Wu Yicheng. Progress of the research on photoelectronic functional crystals[J]. Materials China, 2010, 29(10): 1-15
    [8] 徐军. 激光晶体材料的发展和思考[J]. 激光与光电子学进展, 2006, 43(9):17-24. (Xu Jun. Recent developments and research frontier of laser crystals[J]. Laser & Optoelectronics Progress, 2006, 43(9): 17-24
    [9] Payne S A, Chase L L, Newkirk H W, et al. LiCaAlF6: Cr3+: a promising new solid-state laser material[J]. IEEE Journal of Quantum Electronics, 1988, 24(11): 2243-2252. doi: 10.1109/3.8567
    [10] Payne S A, Chase L L, Smith L K, et al. Laser performance of LiSrAlF6: Cr3+[J]. Journal of Applied Physics, 1989, 66(3): 1051-1056. doi: 10.1063/1.343491
    [11] Petricevic V, Gayen S K, Alfano R R. Laser action in chromium-activated forsterite for near-infrared excitation—Is Cr4+ the lasing ion?[J]. Applied Physics Letters, 1988, 53: 2590-2592. doi: 10.1063/1.100536
    [12] 王军利, 吕志国, 卜祥宝. 稀土离子掺杂飞秒光纤激光器最新进展[J]. 激光与光电子学进展, 2012, 49:100006. (Wang Junli, Lü Zhiguo, Bu Xiangbao. Recent progress on rare erath doped femtosecond fiber lasers[J]. Laser & Optoelectronics Progress, 2012, 49: 100006
    [13] 王臻. 飞秒光纤激光器研制与发展概况[J]. 激光杂志, 2015, 36(6):12-15. (Wang Zhen. Development overview for femtosecond fiber lasers[J]. Laser Journal, 2015, 36(6): 12-15
    [14] Yoshida A, Schmidt A, Petrov V, et al. Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses[J]. Optics Letters, 2011, 36(22): 4425-4427. doi: 10.1364/OL.36.004425
    [15] Yoshida A, Schmidt A, Zhang H, et al. 42-fs diode-pumped Yb:Ca4YO(BO3)3 oscillator[J]. Optics Express, 2010, 18(23): 24325-24330. doi: 10.1364/OE.18.024325
    [16] Druon F, Balembois F, Georges P, et al. Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser[J]. Optics Letters, 2000, 25(6): 423-425. doi: 10.1364/OL.25.000423
    [17] Druon F, Balembois F, Georges P, et al. 12-mJ, 350-fs Yb:GdCOB regenerative amplifier[J]. Optics Communications, 2001, 199(1/4): 181-187. doi: 10.1016/S0030-4018(01)01550-4
    [18] Druon F, Chénais S, Raybaut P, et al. Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser[J]. Optics Letters, 2002, 27(3): 197-199. doi: 10.1364/OL.27.000197
    [19] Druon F, Chénais S, Raybaut P, et al. Largely tunable diode-pumped sub-100-fs Yb:BOYS laser[J]. Applied Physics B, 2002, 74: S201-S203.
    [20] Rivier S, Griebner U, Petrov V, et al. Sub-90 fs pulses from a passively mode-locked Yb:YAl3(BO3)4 laser[J]. Applied Physics B, 2008, 93(4): 753-757. doi: 10.1007/s00340-008-3276-z
    [21] Petrov V, Mateos X, Schmidt A, et al. Passive mode-locking of acentric Yb-doped borate crystals[J]. Laser Physics, 2010, 20(5): 1085-1090. doi: 10.1134/S1054660X10090185
    [22] Rivier S, Schmidt A, Kränkel C, et al. Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator[J]. Optics Express, 2007, 15(23): 15539-15544. doi: 10.1364/OE.15.015539
    [23] Romero J J, Johannsen J, Mond M, et al. Continuous-wave laser action of Yb3+-doped lanthanum scandium borate[J]. Applied Physics B, 2005, 80(2): 159-163. doi: 10.1007/s00340-004-1674-4
    [24] Schmidt A, Rivier S, Petrov V, et al. 65 fs diode-pumped diffusion-bonded Yb:KY(WO4)2/KY (WO4)2 laser[J]. Electronics Letters, 2010, 46(9): 641-643. doi: 10.1049/el.2010.3022
    [25] Kovalyov A A, Preobrazhenskii V V, Putyato M A, et al. Efficient high-power femtosecond Yb3+:KY(WO4)2 laser[J]. Laser Physics Letters, 2015, 12(7): 075801. doi: 10.1088/1612-2011/12/7/075801
    [26] Zhao H, Major A. Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator[J]. Optics Express, 2013, 21(26): 31846-31851. doi: 10.1364/OE.21.031846
    [27] Kisel V E, Rudenkov A S, Pavlyuk A A, et al. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser[J]. Optics Letters, 2015, 40(12): 2707-2710. doi: 10.1364/OL.40.002707
    [28] Sévillano P, Georges P, Druon F, et al. 32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20): 6001-6004. doi: 10.1364/OL.39.006001
    [29] Greborio A, Guandalini A, Aus der Au J. Sub-100 fs pulses with 12.5-W from Yb: CALGO based oscillators[C]// Proc of SPIE. 2012, 8235: 823511.
    [30] Gao Z, Zhu J, Wang J, et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser[J]. Photonics Research, 2015, 3(6): 335-338. doi: 10.1364/PRJ.3.000335
    [31] Tan W D, Tang D Y, Xu X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser[J]. Optics Letters, 2011, 36(2): 259-261. doi: 10.1364/OL.36.000259
    [32] Uemura S, Torizuka K. Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser[J]. Japanese Journal of Applied Physics, 2011, 50(1R): 010201. doi: 10.7567/JJAP.50.010201
    [33] Uemura S, Torizuka K. Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized[J]. Applied Ehysics Express, 2008, 1: 012007. doi: 10.1143/APEX.1.012007
    [34] Druon F, Balembois F, Georges P. Ultra-short-pulsed and highly-efficient diode-pumped Yb:SYS mode-locked oscillators[J]. Optics Express, 2004, 12(20): 5005-5012. doi: 10.1364/OPEX.12.005005
    [35] Druon F, Chénais S, Raybaut P, et al. Apatite-structure crystal, Yb3+:SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers[J]. Optics Letters, 2002, 27(21): 1914-1916. doi: 10.1364/OL.27.001914
    [36] Thibault F, Pelenc D, Druon F, et al. Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2 SiO5 high-power femtosecond laser operation[J]. Optics Letters, 2006, 31(10): 1555-1557. doi: 10.1364/OL.31.001555
    [37] Li W, Hao Q, Zhai H, et al. Diode-pumped Yb:GSO femtosecond laser[J]. Optics Express, 2007, 15(5): 2354-2359. doi: 10.1364/OE.15.002354
    [38] Kowalczyk M, Major A, Sotor J. High peak power ultrafast Yb:CaF2 oscillator pumped by a single-mode fiber-coupled laser diode[J]. Optics Express, 2017, 25(21): 26289-26295. doi: 10.1364/OE.25.026289
    [39] Machinet G, Sevillano P, Guichard F, et al. High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator[J]. Optics Letters, 2013, 38(20): 4008-4010. doi: 10.1364/OL.38.004008
    [40] Ge W Q, Chai L, Yan J, et al. High power continuous-wave operation and dynamics of soliton mode-locked Yb, Na:CaF2 lasers at room temperature[J]. IEEE Journal of Quantum Electronics, 2011, 47(4): 977-983.
    [41] Coluccelli N, Galzerano G, Tonelli M, et al. Diode-pumped Yb3+: KYF4 femtosecond laser[J]. Optics Letters, 2008, 33(10): 1141-1143. doi: 10.1364/OL.33.001141
    [42] Coluccelli N, Galzerano G, Bonelli L, et al. Diode-pumped passively mode-locked Yb:YLF laser[J]. Optics Express, 2008, 16(5): 2922-2927. doi: 10.1364/OE.16.002922
    [43] Yasukevich A S, Kisel V E, Kurilchik S V, et al. Continuous wave diode pumped Yb:LLF and Yb:NYF lasers[J]. Optics Communications, 2009, 282(22): 4404-4407. doi: 10.1016/j.optcom.2009.07.063
    [44] Siebold M, Bock S, Schramm U, et al. Yb:CaF2— a new old laser crystal[J]. Applied Physics B, 2009, 97(2): 327-338. doi: 10.1007/s00340-009-3701-y
    [45] Petit V, Doualan J L, Camy P, et al. CW and tunable laser operation of Yb3+ doped CaF2[J]. Applied Physics B, 2004, 78(6): 681-684. doi: 10.1007/s00340-004-1514-6
    [46] Lucca A, Jacquemet M, Druon F, et al. High-power tunable diode-pumped Yb3+:CaF2 laser[J]. Optics Letters, 2004, 29(16): 1879-1881. doi: 10.1364/OL.29.001879
    [47] Lucca A, Debourg G, Jacquemet M, et al. High-power diode-pumped Yb3+:CaF2 femtosecond laser[J]. Optics Letters, 2004, 29(23): 2767-2769. doi: 10.1364/OL.29.002767
    [48] Su L B, Zhang D, Li H J, et al. Passively Q-switched Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber[J]. Optics Express, 2007, 15(5): 2375-2379. doi: 10.1364/OE.15.002375
    [49] Siebold M, Hornung M, Boedefeld R, et al. Terawatt diode-pumped Yb:CaF2 laser[J]. Optics Letters, 2008, 33(23): 2770-2772. doi: 10.1364/OL.33.002770
    [50] Kessler A, Hornung M, Keppler S, et al. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier[J]. Optics Letters,, 2014, 39(6): 1333-1336. doi: 10.1364/OL.39.001333
    [51] Dannecker B, Abdou M A, Graf T. SESAM-modelocked Yb:CaF2 thin-disk-laser generating 285 fs pulses with 1.78 μJ of pulse energy[J]. Laser Physics Letters, 2016, 13: 055801. doi: 10.1088/1612-2011/13/5/055801
    [52] Friebel F, Druon F, Boudeile J, et al. Diode-pumped 99 fs Yb:CaF2 oscillator[J]. Optics Letters, 2019, 34(9): 1474-1476.
    [53] Su L B, Xu J, Li H J, et al. Crystal growth and spectroscopic characterization of Yb-doped and Yb, Na-codoped CaF2 laser crystals by TGT[J]. Journal of Crystal and Growth, 2005, 277(1/4): 264-268. doi: 10.1016/j.jcrysgro.2004.12.170
    [54] Su L B, Xu J, Li H J, et al. Sites structure and spectroscopic properties of Yb-doped and Yb, Na-codoped CaF2 laser crystals[J]. Chemical Physics Letters, 2005, 406(1/3): 254-258. doi: 10.1016/j.cplett.2005.02.122
    [55] Su L B, Xu J, Li H J, et al. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal[J]. Optics Letters, 2005, 30(9): 1003-1005. doi: 10.1364/OL.30.001003
    [56] Du J, Liang X Y, Wang Y G, et al. 1 ps passively mode-locked laser operation of Na, Yb:CaF2 crystal[J]. Optics Express, 2005, 13(20): 7970-7975. doi: 10.1364/OPEX.13.007970
    [57] Innerhofer E, Südmeyer T, Brunner F, et al. 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser[J]. Optics Letters, 2003, 28(5): 367-369. doi: 10.1364/OL.28.000367
    [58] Dzhurinskiy B F, Tanaev N V, Aliev O A. Solubility and phase equilibria in systems Sm2O3-SrO-B2O3 and Eu2O3-SrO-B2O3[J]. Inorganic Materials, 1968, 4: 1972-1975.
    [59] Pan S, Wang G. Radiative lifetime, oscillator strength and quantum efficiency calculations in Nd3+:Ba3La2(BO3)4 crystal[J]. Materials Research Innovations, 2005, 9(4): 112-112. doi: 10.1080/14328917.2005.11784916
    [60] Ma P, Hu Z, Lin Z, et al. Spectroscopic properties of Nd3+:Ba3Y2(BO3)4 crystal[J]. Materials Research Innovations, 2005, 9(2): 50-51. doi: 10.1080/14328917.2005.11784890
    [61] Zhang Y, Wang G F, Lin Z B, et al. Optical parameters of Nd3+ Ion in Sr3Gd2(BO3)4 crystal[J]. Journal of Inorganic Materials, 2010, 25(10): 1110-1114. doi: 10.3724/SP.J.1077.2010.01110
    [62] Zhang Y, Wang G F, Lin Z B, et al. Spectroscopic properties of Nd:Sr3Gd2(BO3)4[J]. Physica Status Solidi (a), 2012, 209(6): 1128-1133. doi: 10.1002/pssa.201127735
    [63] Pan Z, Yu H, Cong H, et al. Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal[J]. Applied Optics, 2012, 51(30): 7144-7149. doi: 10.1364/AO.51.007144
    [64] Pan Z B, Zhang H J, Yu H H, et al. Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal[J]. Applied Physics B, 2012, 106(1): 197-209.
    [65] Pan Z, Cong H, Yu H, et al. Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2 (BO3)4 crystal[J]. Journal of Crystal Growth, 2013, 363: 176-184. doi: 10.1016/j.jcrysgro.2012.10.034
    [66] Pan Z, Cong H, Yu H, et al. Growth, thermal properties and laser operation of Nd:Ca3La2(BO3)4: A new disordered laser crystal[J]. Optics Express, 2013, 21(5): 6091-6100. doi: 10.1364/OE.21.006091
    [67] Pan Z, Cai H, Huang H, et al. Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4[J]. Journal of Alloys and Compounds, 2014, 607: 16-22. doi: 10.1016/j.jallcom.2014.04.066
    [68] Pan Z, Ma J, Xu H, et al. 251 fs pulse generation with a Nd3+-doped Ca3Gd2(BO3)4 disordered crystal[J]. RSC Advances, 2015, 5(55): 44137-44141. doi: 10.1039/C5RA04720J
    [69] Wang D, Shen C, Pan Z, et al. Growth, thermal and spectral properties of Nd3+:Ba3Gd2(BO3)4 single crystal[J]. Optical Materials, 2014, 36(12): 2044-2048. doi: 10.1016/j.optmat.2013.12.021
    [70] Ma J, Pan Z, Cai H, et al. Sub-80 femtosecond pulses generation from a diode-pumped mode-locked Nd:Ca3La2(BO3)4 disordered crystal laser[J]. Optics Letters, 2016, 41(7): 1384-1387. doi: 10.1364/OL.41.001384
    [71] Tu C, Wang Y, You Z, et al. Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal[J]. Journal of Crystal Growth, 2004, 265(1/2): 154-158.
    [72] Wang Y, Tu C, Huang C, et al. Study of Crystal Yb3+:Ca3Y2(BO3)4[J]. Journal of Materials Research, 2004, 19(4): 1203-1207. doi: 10.1557/JMR.2004.0156
    [73] Xu J L, He J L, Huang H T, et al. Performance of diode pumped Yb:Y2Ca3B4O12 laser with V3+:YAG as saturable absorber for passively Q-switched mode-locking operation[J]. Laser Physics Letters, 2010, 7(3): 198-202. doi: 10.1002/lapl.200910127
    [74] Xu J L, He J L, Huang H T, et al. Generation of 244‐fs pulse at 1044.7 nm by a diode‐pumped mode‐locked Yb:Y2Ca3(BO3)4 laser[J]. Laser Physics Letters, 2011, 8(1): 24-27. doi: 10.1002/lapl.201010089
    [75] Xu J L, Tu C Y, Wang Y, et al. Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal[J]. Optical Materials, 2011, 33(11): 1766-1769. doi: 10.1016/j.optmat.2011.06.005
    [76] Wang Y Q, Wang Y, Sun C L, et al. Growth, spectroscopic characteristics and laser potential of Yb3+:Ca3La2(BO3)4 crystal[J]. Laser Physics, 2012, 22(6): 1021-1028. doi: 10.1134/S1054660X12060151
    [77] Wang Y, You Z, Zhu Z, et al. Ca3La2(BO3)4 crystal: a new candidate host material for the ytterbium ion[J]. Laser Physics, 2013, 23(10): 105816. doi: 10.1088/1054-660X/23/10/105816
    [78] Xu J L, Ji Y X, Wang Y Q, et al. Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber[J]. Optics Express, 2014, 22(6): 6577-6585. doi: 10.1364/OE.22.006577
    [79] Sun Y, Xu J, Gao S, et al. Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber[J]. Materials Letters, 2015, 160: 268-270. doi: 10.1016/j.matlet.2015.07.128
    [80] Wang Y, Chen A, Tu C. Comparison of actively Q-switched laser performance of disordered Yb: Ca3La2(BO3)4 crystals cut along the crystallographic axes[J]. Applied Optics, 2015, 54(8): 2066-2071. doi: 10.1364/AO.54.002066
    [81] Pan J, Lin Z, Hu Z, et al. Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal[J]. Optical Materials, 2006, 28(3): 250-254. doi: 10.1016/j.optmat.2004.12.019
    [82] Zhang Y, Lin Z, Zhang L, et al. Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal[J]. Optical Materials, 2007, 29(5): 543-546. doi: 10.1016/j.optmat.2005.10.016
    [83] Zhang Y, Wang G F. Growth and optical properties of Yb3+ doped Sr3Y2(BO3)4 crystal[J]. Materials Research Innovations, 2010, 14(4): 277-279. doi: 10.1179/143307510X12777574294821
    [84] Zhang Y, Wang G. Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal[J]. Journal of Materials Research, 2012, 27(16): 2106-2110. doi: 10.1557/jmr.2012.210
    [85] Zhang Y, Lin Z, Wang G. Synthesis, growth, structure and characterization of the new laser host crystal Sr3Y2(BO3)4[J]. Laser Physics Letters, 2013, 10: 075806. doi: 10.1088/1612-2011/10/7/075806
    [86] Wang L, Han W, Pan Z, et al. High-energy passively Q-switched laser operation of Yb:Ca3La2(BO3)4 disordered crystal[J]. Applied Optics, 2016, 55(13): 3447-3451. doi: 10.1364/AO.55.003447
    [87] Wang L, Xu H, Pan Z, et al. Anisotropic laser properties of Yb:Ca3La2(BO3)4 disordered crystal[J]. Optical Materials, 2016, 58: 196-202. doi: 10.1016/j.optmat.2016.05.050
    [88] Yuan H, Wang L, Ma Y, et al. Anisotropy in spectroscopic and laser properties of Yb:Sr3La2(BO3)4 disordered crystal[J]. Optical Materials Express, 2017, 7(9): 3251-3260. doi: 10.1364/OME.7.003251
    [89] Sun S, Xu J, Wei Q, et al. Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal[J]. Journal of Alloys and Compounds, 2015, 632: 386-391. doi: 10.1016/j.jallcom.2015.01.245
    [90] Lou F, Sun S, He J, et al. Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser[J]. Optical Materials, 2016, 55: 1-4. doi: 10.1016/j.optmat.2016.03.009
    [91] Sun S, Lou F, Huang Y, et al. Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at.%) Yb:Sr3Y2(BO3)4 crystal[J]. Journal of Alloys and Compounds, 2016, 687: 480-485. doi: 10.1016/j.jallcom.2016.06.167
    [92] Eimerl D, Davis L, Velsko S, et al. Optical, mechanical, and thermal properties of barium borate[J]. Journal of Applied Physics, 1987, 62(5): 1968-1983. doi: 10.1063/1.339536
    [93] Eimerl D. High average power harmonic generation[J]. IEEE Journal of Quantum Electronics, 1987, 23(5): 575-592. doi: 10.1109/JQE.1987.1073391
    [94] Sun S, Wei Q, Lou F, et al. A promising ultrafast pulse laser crystal with a disordered structure: Yb3+:Sr3Gd2(BO3)4[J]. Cryst Eng Comm, 2017, 19(12): 1620-1626. doi: 10.1039/C7CE00025A
  • 加载中
图(22) / 表(1)
计量
  • 文章访问数:  2525
  • HTML全文浏览量:  569
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2019-12-20
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回