Progress of the research on Yb3+-doped femtosecond laser crystals
-
摘要: 飞秒激光在军事、医学、通讯、加工等领域有着重要应用,已经成为新世纪激光技术领域的研究热点。得益于激光二极管(LD)的快速发展,以LD作为泵浦源成为新型全固态飞秒激光器的发展趋势。Yb3+离子掺杂的激光晶体材料因其独特的能级结构、宽带吸收与发射等优势,逐渐成为LD直接泵浦并实现1.0 μm飞秒激光输出的重要增益介质。详细总结了当前掺Yb3+飞秒激光晶体的研究进展,分析了目前存在的主要问题,给出了未来飞秒激光晶体发展的两个建议方向:高效率小功率飞秒激光和大功率高能量飞秒激光。以Yb3+:Sr3Y2(BO3)4晶体为例,详细研究了其晶体生长、光谱、连续与飞秒激光性能,并实现了中心波长在1 060 nm处脉宽为116 fs,平均输出功率为1.08 W,光光转换效率为33.1%的高效率飞秒激光输出,表明Yb3+:Sr3Y2(BO3)4及其同体系晶体是一类优异的高效率飞秒激光材料。
-
关键词:
- 飞秒激光 /
- 激光晶体 /
- Yb3+离子 /
- 激光二极管 /
- Yb3+:Sr3Y2(BO3)4 /
- Yb3+:Sr3Gd2(BO3)4
Abstract: As widely used in military, medicine, communication, processing and other fields, femtosecond laser has become a research hotspot of the whole laser technology in the 21st century. The pump source used by laser diodes (LDS) has become a new development trend of all-solid-state femtosecond lasers owe to the rapid development of LDs. Yb3+-doped laser crystal materials gradually become important gain media for LD pumping and generate 1.0 μm femtosecond laser due to their unique energy level structures, broad absorption and emission spectra. In this paper, the research progress of Yb3+-doped femtosecond laser crystals is summarized in detail, the main problems are analyzed, and two directions for the development of femtosecond laser crystals in the future are proposed: high efficiency and low power femtosecond laser, high power and high energy femtosecond laser. The crystal growth, spectra properties, continuous and femtosecond laser performances of the Yb3+:Sr3Y2(BO3)4 crystal were studied in detail. And the Yb3+:Sr3Y2(BO3)4 femtosecond laser with the center wavelength of 1060 nm, pulse width of 116 fs, average output power of 1.08 W and optical conversion efficiency of 33.1% were successfully generated. The experimental results indicate that Yb3+:Sr3Y2(BO3)4 and its corresponding system crystals are excellent femtosecond laser materials with high optical conversion efficiency.-
Key words:
- femtosecond laser /
- laser crystal /
- Yb3+ ions /
- laser diode /
- Yb3+:Sr3Y2(BO3)4 /
- Yb3+:Sr3Gd2(BO3)4
-
表 1 掺Yb3+飞秒激光晶体的光谱与激光参数
Table 1. Spectra and laser parameters of Yb3+-doped femtosecond laser crystals
matrix crystal absorption spectrum FWHM/nm emission spectrum FWHM/nm wavelength/nm pulse width/fs average power/mW optical-optical conversion efficiency/% reference YCa4O(BO3)3 3 44 1 055
1 05035
4636
462.6
4.2[14-15] GdCa4O(BO3)3 3 44 1 045
1 03090
35040
−2
−[16-17] Sr3Y(BO3)3 6 60 1 062
1 06869
8680
3007.3
12[18-19] YAl3(BO3)4 22 25 1 050 87 61 2.5 [20-21] LaSc3(BO3)4 25 33 1 053 67
5839
732
3.7[22-23] KY(WO4)2 3.5 24 1 039
1 03365
11422
5 0002
33.3[24-25] KGd(WO4)2 3.5 25 1 040
1 03867
1623 000
8 80010
32.1[26-27] CaGdAlO4 6 60 1 063
1 05032
9490
12 5002.5
20[28-29] CaYAlO4 11 61 1 059
1 04533
15636
7402.9
19.2[30-31] Y3Al5O12 4 9 1 060
1 05135
100107
1512.3
3.2[32-33] SrY4(SiO4)3O 7 73 1 066
1 06870
94156
1103.9
3.1[34-35] Y2SiO5 6 48 1 041
1 044122
198410
2 6102.7
17.4[36] Lu2SiO5 6 67 1 059 233
2601 100
2 6007.3
17.4[36] Gd2SiO5 6 72 1 031 343 396 7.9 [37] CaF2 18 71 1 049 65
6835
2 4003.2
33[38-39] Na:CaF2 24/5 65/15 1 039 175
190352
5107.8
6.6[40] YYF4 11 40 1 033
1 031170
210130
2508.3
14.3[41] YLiF4 11 40 1 028
1 024196
23354
1201.4
2.5[42] -
[1] 王继扬. 人工晶体[J]. 科学观察, 2018, 12(5):23-26. (Wang Jiyang. Synthetic crystals[J]. Science Focus, 2018, 12(5): 23-26 [2] 林尊琪, 陈卫标, 楼祺洪, 等. 我国近期激光前沿若干重要进展评述[J]. 中国科学: 技术科学, 2013, 43(9):961-978. (Lin Zunqi, Chen Weibiao, Lou Qihong, et al. Review on the recent progress of laser frontiers in China[J]. Scientia Sinica Techologica, 2013, 43(9): 961-978 [3] 沈德忠, 张书峰, 陈建荣, 等. 人工晶体的进展与发展动向[J]. 人工晶体学报, 2012, 41(S):1-5. (Shen Dezhong, Zhang Shufeng, Chen Jianrong, et al. Progress and developing trend of synthetic crystals[J]. Journal of Synthetic Crystals, 2012, 41(S): 1-5 [4] Moulton P F. Ti-doped sapphire: tunable solid-state laser[J]. Optics News, 1982, 8(6): 9-9. doi: 10.1364/ON.8.6.000009 [5] Moulton P F. Spectroscopic and laser characteristics of Ti:Al2O3[J]. Journal of the Optical Society of America B: Optical Physics, 1986, 3(1): 125-133. doi: 10.1364/JOSAB.3.000125 [6] Spence D E, Kean P N, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44. doi: 10.1364/OL.16.000042 [7] 王继扬, 吴以成. 光电功能晶体材料研究进展[J]. 中国材料进展, 2010, 29(10):1-15. (Wang Jiyang, Wu Yicheng. Progress of the research on photoelectronic functional crystals[J]. Materials China, 2010, 29(10): 1-15 [8] 徐军. 激光晶体材料的发展和思考[J]. 激光与光电子学进展, 2006, 43(9):17-24. (Xu Jun. Recent developments and research frontier of laser crystals[J]. Laser & Optoelectronics Progress, 2006, 43(9): 17-24 [9] Payne S A, Chase L L, Newkirk H W, et al. LiCaAlF6: Cr3+: a promising new solid-state laser material[J]. IEEE Journal of Quantum Electronics, 1988, 24(11): 2243-2252. doi: 10.1109/3.8567 [10] Payne S A, Chase L L, Smith L K, et al. Laser performance of LiSrAlF6: Cr3+[J]. Journal of Applied Physics, 1989, 66(3): 1051-1056. doi: 10.1063/1.343491 [11] Petricevic V, Gayen S K, Alfano R R. Laser action in chromium-activated forsterite for near-infrared excitation—Is Cr4+ the lasing ion?[J]. Applied Physics Letters, 1988, 53: 2590-2592. doi: 10.1063/1.100536 [12] 王军利, 吕志国, 卜祥宝. 稀土离子掺杂飞秒光纤激光器最新进展[J]. 激光与光电子学进展, 2012, 49:100006. (Wang Junli, Lü Zhiguo, Bu Xiangbao. Recent progress on rare erath doped femtosecond fiber lasers[J]. Laser & Optoelectronics Progress, 2012, 49: 100006 [13] 王臻. 飞秒光纤激光器研制与发展概况[J]. 激光杂志, 2015, 36(6):12-15. (Wang Zhen. Development overview for femtosecond fiber lasers[J]. Laser Journal, 2015, 36(6): 12-15 [14] Yoshida A, Schmidt A, Petrov V, et al. Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses[J]. Optics Letters, 2011, 36(22): 4425-4427. doi: 10.1364/OL.36.004425 [15] Yoshida A, Schmidt A, Zhang H, et al. 42-fs diode-pumped Yb:Ca4YO(BO3)3 oscillator[J]. Optics Express, 2010, 18(23): 24325-24330. doi: 10.1364/OE.18.024325 [16] Druon F, Balembois F, Georges P, et al. Generation of 90-fs pulses from a mode-locked diode-pumped Yb3+:Ca4GdO(BO3)3 laser[J]. Optics Letters, 2000, 25(6): 423-425. doi: 10.1364/OL.25.000423 [17] Druon F, Balembois F, Georges P, et al. 12-mJ, 350-fs Yb:GdCOB regenerative amplifier[J]. Optics Communications, 2001, 199(1/4): 181-187. doi: 10.1016/S0030-4018(01)01550-4 [18] Druon F, Chénais S, Raybaut P, et al. Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser[J]. Optics Letters, 2002, 27(3): 197-199. doi: 10.1364/OL.27.000197 [19] Druon F, Chénais S, Raybaut P, et al. Largely tunable diode-pumped sub-100-fs Yb:BOYS laser[J]. Applied Physics B, 2002, 74: S201-S203. [20] Rivier S, Griebner U, Petrov V, et al. Sub-90 fs pulses from a passively mode-locked Yb:YAl3(BO3)4 laser[J]. Applied Physics B, 2008, 93(4): 753-757. doi: 10.1007/s00340-008-3276-z [21] Petrov V, Mateos X, Schmidt A, et al. Passive mode-locking of acentric Yb-doped borate crystals[J]. Laser Physics, 2010, 20(5): 1085-1090. doi: 10.1134/S1054660X10090185 [22] Rivier S, Schmidt A, Kränkel C, et al. Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator[J]. Optics Express, 2007, 15(23): 15539-15544. doi: 10.1364/OE.15.015539 [23] Romero J J, Johannsen J, Mond M, et al. Continuous-wave laser action of Yb3+-doped lanthanum scandium borate[J]. Applied Physics B, 2005, 80(2): 159-163. doi: 10.1007/s00340-004-1674-4 [24] Schmidt A, Rivier S, Petrov V, et al. 65 fs diode-pumped diffusion-bonded Yb:KY(WO4)2/KY (WO4)2 laser[J]. Electronics Letters, 2010, 46(9): 641-643. doi: 10.1049/el.2010.3022 [25] Kovalyov A A, Preobrazhenskii V V, Putyato M A, et al. Efficient high-power femtosecond Yb3+:KY(WO4)2 laser[J]. Laser Physics Letters, 2015, 12(7): 075801. doi: 10.1088/1612-2011/12/7/075801 [26] Zhao H, Major A. Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator[J]. Optics Express, 2013, 21(26): 31846-31851. doi: 10.1364/OE.21.031846 [27] Kisel V E, Rudenkov A S, Pavlyuk A A, et al. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser[J]. Optics Letters, 2015, 40(12): 2707-2710. doi: 10.1364/OL.40.002707 [28] Sévillano P, Georges P, Druon F, et al. 32-fs Kerr-lens mode-locked Yb:CaGdAlO4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20): 6001-6004. doi: 10.1364/OL.39.006001 [29] Greborio A, Guandalini A, Aus der Au J. Sub-100 fs pulses with 12.5-W from Yb: CALGO based oscillators[C]// Proc of SPIE. 2012, 8235: 823511. [30] Gao Z, Zhu J, Wang J, et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser[J]. Photonics Research, 2015, 3(6): 335-338. doi: 10.1364/PRJ.3.000335 [31] Tan W D, Tang D Y, Xu X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser[J]. Optics Letters, 2011, 36(2): 259-261. doi: 10.1364/OL.36.000259 [32] Uemura S, Torizuka K. Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser[J]. Japanese Journal of Applied Physics, 2011, 50(1R): 010201. doi: 10.7567/JJAP.50.010201 [33] Uemura S, Torizuka K. Kerr-lens mode-locked diode-pumped Yb:YAG laser with the transverse mode passively stabilized[J]. Applied Ehysics Express, 2008, 1: 012007. doi: 10.1143/APEX.1.012007 [34] Druon F, Balembois F, Georges P. Ultra-short-pulsed and highly-efficient diode-pumped Yb:SYS mode-locked oscillators[J]. Optics Express, 2004, 12(20): 5005-5012. doi: 10.1364/OPEX.12.005005 [35] Druon F, Chénais S, Raybaut P, et al. Apatite-structure crystal, Yb3+:SrY4(SiO4)3O, for the development of diode-pumped femtosecond lasers[J]. Optics Letters, 2002, 27(21): 1914-1916. doi: 10.1364/OL.27.001914 [36] Thibault F, Pelenc D, Druon F, et al. Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2 SiO5 high-power femtosecond laser operation[J]. Optics Letters, 2006, 31(10): 1555-1557. doi: 10.1364/OL.31.001555 [37] Li W, Hao Q, Zhai H, et al. Diode-pumped Yb:GSO femtosecond laser[J]. Optics Express, 2007, 15(5): 2354-2359. doi: 10.1364/OE.15.002354 [38] Kowalczyk M, Major A, Sotor J. High peak power ultrafast Yb:CaF2 oscillator pumped by a single-mode fiber-coupled laser diode[J]. Optics Express, 2017, 25(21): 26289-26295. doi: 10.1364/OE.25.026289 [39] Machinet G, Sevillano P, Guichard F, et al. High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb:CaF2 oscillator[J]. Optics Letters, 2013, 38(20): 4008-4010. doi: 10.1364/OL.38.004008 [40] Ge W Q, Chai L, Yan J, et al. High power continuous-wave operation and dynamics of soliton mode-locked Yb, Na:CaF2 lasers at room temperature[J]. IEEE Journal of Quantum Electronics, 2011, 47(4): 977-983. [41] Coluccelli N, Galzerano G, Tonelli M, et al. Diode-pumped Yb3+: KYF4 femtosecond laser[J]. Optics Letters, 2008, 33(10): 1141-1143. doi: 10.1364/OL.33.001141 [42] Coluccelli N, Galzerano G, Bonelli L, et al. Diode-pumped passively mode-locked Yb:YLF laser[J]. Optics Express, 2008, 16(5): 2922-2927. doi: 10.1364/OE.16.002922 [43] Yasukevich A S, Kisel V E, Kurilchik S V, et al. Continuous wave diode pumped Yb:LLF and Yb:NYF lasers[J]. Optics Communications, 2009, 282(22): 4404-4407. doi: 10.1016/j.optcom.2009.07.063 [44] Siebold M, Bock S, Schramm U, et al. Yb:CaF2— a new old laser crystal[J]. Applied Physics B, 2009, 97(2): 327-338. doi: 10.1007/s00340-009-3701-y [45] Petit V, Doualan J L, Camy P, et al. CW and tunable laser operation of Yb3+ doped CaF2[J]. Applied Physics B, 2004, 78(6): 681-684. doi: 10.1007/s00340-004-1514-6 [46] Lucca A, Jacquemet M, Druon F, et al. High-power tunable diode-pumped Yb3+:CaF2 laser[J]. Optics Letters, 2004, 29(16): 1879-1881. doi: 10.1364/OL.29.001879 [47] Lucca A, Debourg G, Jacquemet M, et al. High-power diode-pumped Yb3+:CaF2 femtosecond laser[J]. Optics Letters, 2004, 29(23): 2767-2769. doi: 10.1364/OL.29.002767 [48] Su L B, Zhang D, Li H J, et al. Passively Q-switched Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber[J]. Optics Express, 2007, 15(5): 2375-2379. doi: 10.1364/OE.15.002375 [49] Siebold M, Hornung M, Boedefeld R, et al. Terawatt diode-pumped Yb:CaF2 laser[J]. Optics Letters, 2008, 33(23): 2770-2772. doi: 10.1364/OL.33.002770 [50] Kessler A, Hornung M, Keppler S, et al. 16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier[J]. Optics Letters,, 2014, 39(6): 1333-1336. doi: 10.1364/OL.39.001333 [51] Dannecker B, Abdou M A, Graf T. SESAM-modelocked Yb:CaF2 thin-disk-laser generating 285 fs pulses with 1.78 μJ of pulse energy[J]. Laser Physics Letters, 2016, 13: 055801. doi: 10.1088/1612-2011/13/5/055801 [52] Friebel F, Druon F, Boudeile J, et al. Diode-pumped 99 fs Yb:CaF2 oscillator[J]. Optics Letters, 2019, 34(9): 1474-1476. [53] Su L B, Xu J, Li H J, et al. Crystal growth and spectroscopic characterization of Yb-doped and Yb, Na-codoped CaF2 laser crystals by TGT[J]. Journal of Crystal and Growth, 2005, 277(1/4): 264-268. doi: 10.1016/j.jcrysgro.2004.12.170 [54] Su L B, Xu J, Li H J, et al. Sites structure and spectroscopic properties of Yb-doped and Yb, Na-codoped CaF2 laser crystals[J]. Chemical Physics Letters, 2005, 406(1/3): 254-258. doi: 10.1016/j.cplett.2005.02.122 [55] Su L B, Xu J, Li H J, et al. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal[J]. Optics Letters, 2005, 30(9): 1003-1005. doi: 10.1364/OL.30.001003 [56] Du J, Liang X Y, Wang Y G, et al. 1 ps passively mode-locked laser operation of Na, Yb:CaF2 crystal[J]. Optics Express, 2005, 13(20): 7970-7975. doi: 10.1364/OPEX.13.007970 [57] Innerhofer E, Südmeyer T, Brunner F, et al. 60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser[J]. Optics Letters, 2003, 28(5): 367-369. doi: 10.1364/OL.28.000367 [58] Dzhurinskiy B F, Tanaev N V, Aliev O A. Solubility and phase equilibria in systems Sm2O3-SrO-B2O3 and Eu2O3-SrO-B2O3[J]. Inorganic Materials, 1968, 4: 1972-1975. [59] Pan S, Wang G. Radiative lifetime, oscillator strength and quantum efficiency calculations in Nd3+:Ba3La2(BO3)4 crystal[J]. Materials Research Innovations, 2005, 9(4): 112-112. doi: 10.1080/14328917.2005.11784916 [60] Ma P, Hu Z, Lin Z, et al. Spectroscopic properties of Nd3+:Ba3Y2(BO3)4 crystal[J]. Materials Research Innovations, 2005, 9(2): 50-51. doi: 10.1080/14328917.2005.11784890 [61] Zhang Y, Wang G F, Lin Z B, et al. Optical parameters of Nd3+ Ion in Sr3Gd2(BO3)4 crystal[J]. Journal of Inorganic Materials, 2010, 25(10): 1110-1114. doi: 10.3724/SP.J.1077.2010.01110 [62] Zhang Y, Wang G F, Lin Z B, et al. Spectroscopic properties of Nd:Sr3Gd2(BO3)4[J]. Physica Status Solidi (a), 2012, 209(6): 1128-1133. doi: 10.1002/pssa.201127735 [63] Pan Z, Yu H, Cong H, et al. Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal[J]. Applied Optics, 2012, 51(30): 7144-7149. doi: 10.1364/AO.51.007144 [64] Pan Z B, Zhang H J, Yu H H, et al. Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal[J]. Applied Physics B, 2012, 106(1): 197-209. [65] Pan Z, Cong H, Yu H, et al. Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2 (BO3)4 crystal[J]. Journal of Crystal Growth, 2013, 363: 176-184. doi: 10.1016/j.jcrysgro.2012.10.034 [66] Pan Z, Cong H, Yu H, et al. Growth, thermal properties and laser operation of Nd:Ca3La2(BO3)4: A new disordered laser crystal[J]. Optics Express, 2013, 21(5): 6091-6100. doi: 10.1364/OE.21.006091 [67] Pan Z, Cai H, Huang H, et al. Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4[J]. Journal of Alloys and Compounds, 2014, 607: 16-22. doi: 10.1016/j.jallcom.2014.04.066 [68] Pan Z, Ma J, Xu H, et al. 251 fs pulse generation with a Nd3+-doped Ca3Gd2(BO3)4 disordered crystal[J]. RSC Advances, 2015, 5(55): 44137-44141. doi: 10.1039/C5RA04720J [69] Wang D, Shen C, Pan Z, et al. Growth, thermal and spectral properties of Nd3+:Ba3Gd2(BO3)4 single crystal[J]. Optical Materials, 2014, 36(12): 2044-2048. doi: 10.1016/j.optmat.2013.12.021 [70] Ma J, Pan Z, Cai H, et al. Sub-80 femtosecond pulses generation from a diode-pumped mode-locked Nd:Ca3La2(BO3)4 disordered crystal laser[J]. Optics Letters, 2016, 41(7): 1384-1387. doi: 10.1364/OL.41.001384 [71] Tu C, Wang Y, You Z, et al. Growth and spectroscopic characteristics of Ca3Gd2(BO3)4:Yb3+ laser crystal[J]. Journal of Crystal Growth, 2004, 265(1/2): 154-158. [72] Wang Y, Tu C, Huang C, et al. Study of Crystal Yb3+:Ca3Y2(BO3)4[J]. Journal of Materials Research, 2004, 19(4): 1203-1207. doi: 10.1557/JMR.2004.0156 [73] Xu J L, He J L, Huang H T, et al. Performance of diode pumped Yb:Y2Ca3B4O12 laser with V3+:YAG as saturable absorber for passively Q-switched mode-locking operation[J]. Laser Physics Letters, 2010, 7(3): 198-202. doi: 10.1002/lapl.200910127 [74] Xu J L, He J L, Huang H T, et al. Generation of 244‐fs pulse at 1044.7 nm by a diode‐pumped mode‐locked Yb:Y2Ca3(BO3)4 laser[J]. Laser Physics Letters, 2011, 8(1): 24-27. doi: 10.1002/lapl.201010089 [75] Xu J L, Tu C Y, Wang Y, et al. Multi-wavelength continuous-wave laser operation of Yb:Ca3Gd2(BO3)4 disordered crystal[J]. Optical Materials, 2011, 33(11): 1766-1769. doi: 10.1016/j.optmat.2011.06.005 [76] Wang Y Q, Wang Y, Sun C L, et al. Growth, spectroscopic characteristics and laser potential of Yb3+:Ca3La2(BO3)4 crystal[J]. Laser Physics, 2012, 22(6): 1021-1028. doi: 10.1134/S1054660X12060151 [77] Wang Y, You Z, Zhu Z, et al. Ca3La2(BO3)4 crystal: a new candidate host material for the ytterbium ion[J]. Laser Physics, 2013, 23(10): 105816. doi: 10.1088/1054-660X/23/10/105816 [78] Xu J L, Ji Y X, Wang Y Q, et al. Self-Q-switched, orthogonally polarized, dual-wavelength laser using long-lifetime Yb3+ crystal as both gain medium and saturable absorber[J]. Optics Express, 2014, 22(6): 6577-6585. doi: 10.1364/OE.22.006577 [79] Sun Y, Xu J, Gao S, et al. Wavelength-tunable, passively Q-switched Yb3+:Ca3Y2(BO3)4 solid state laser using MoS2 saturable absorber[J]. Materials Letters, 2015, 160: 268-270. doi: 10.1016/j.matlet.2015.07.128 [80] Wang Y, Chen A, Tu C. Comparison of actively Q-switched laser performance of disordered Yb: Ca3La2(BO3)4 crystals cut along the crystallographic axes[J]. Applied Optics, 2015, 54(8): 2066-2071. doi: 10.1364/AO.54.002066 [81] Pan J, Lin Z, Hu Z, et al. Crystal growth and spectral properties of Yb3+:Sr3La2(BO3)4 crystal[J]. Optical Materials, 2006, 28(3): 250-254. doi: 10.1016/j.optmat.2004.12.019 [82] Zhang Y, Lin Z, Zhang L, et al. Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal[J]. Optical Materials, 2007, 29(5): 543-546. doi: 10.1016/j.optmat.2005.10.016 [83] Zhang Y, Wang G F. Growth and optical properties of Yb3+ doped Sr3Y2(BO3)4 crystal[J]. Materials Research Innovations, 2010, 14(4): 277-279. doi: 10.1179/143307510X12777574294821 [84] Zhang Y, Wang G. Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal[J]. Journal of Materials Research, 2012, 27(16): 2106-2110. doi: 10.1557/jmr.2012.210 [85] Zhang Y, Lin Z, Wang G. Synthesis, growth, structure and characterization of the new laser host crystal Sr3Y2(BO3)4[J]. Laser Physics Letters, 2013, 10: 075806. doi: 10.1088/1612-2011/10/7/075806 [86] Wang L, Han W, Pan Z, et al. High-energy passively Q-switched laser operation of Yb:Ca3La2(BO3)4 disordered crystal[J]. Applied Optics, 2016, 55(13): 3447-3451. doi: 10.1364/AO.55.003447 [87] Wang L, Xu H, Pan Z, et al. Anisotropic laser properties of Yb:Ca3La2(BO3)4 disordered crystal[J]. Optical Materials, 2016, 58: 196-202. doi: 10.1016/j.optmat.2016.05.050 [88] Yuan H, Wang L, Ma Y, et al. Anisotropy in spectroscopic and laser properties of Yb:Sr3La2(BO3)4 disordered crystal[J]. Optical Materials Express, 2017, 7(9): 3251-3260. doi: 10.1364/OME.7.003251 [89] Sun S, Xu J, Wei Q, et al. Yb3+:Sr3Y2(BO3)4: a potential ultrashort pulse laser crystal[J]. Journal of Alloys and Compounds, 2015, 632: 386-391. doi: 10.1016/j.jallcom.2015.01.245 [90] Lou F, Sun S, He J, et al. Direct diode-pumped 58 fs Yb:Sr3Y2(BO3)4 laser[J]. Optical Materials, 2016, 55: 1-4. doi: 10.1016/j.optmat.2016.03.009 [91] Sun S, Lou F, Huang Y, et al. Spectroscopy properties and high-efficiency semiconductor saturable absorber mode-locking operation with highly doped (11 at.%) Yb:Sr3Y2(BO3)4 crystal[J]. Journal of Alloys and Compounds, 2016, 687: 480-485. doi: 10.1016/j.jallcom.2016.06.167 [92] Eimerl D, Davis L, Velsko S, et al. Optical, mechanical, and thermal properties of barium borate[J]. Journal of Applied Physics, 1987, 62(5): 1968-1983. doi: 10.1063/1.339536 [93] Eimerl D. High average power harmonic generation[J]. IEEE Journal of Quantum Electronics, 1987, 23(5): 575-592. doi: 10.1109/JQE.1987.1073391 [94] Sun S, Wei Q, Lou F, et al. A promising ultrafast pulse laser crystal with a disordered structure: Yb3+:Sr3Gd2(BO3)4[J]. Cryst Eng Comm, 2017, 19(12): 1620-1626. doi: 10.1039/C7CE00025A