-
摘要: 为了控制重频放大器的热致波前畸变,设计并加工了均匀冷却的背面水冷激活镜激光放大器,对放大器的热畸变特性开展了实验研究,实验发现在泵浦功率密度较高即重复频率达到10 Hz,平均功率密度达到200 W/cm2时,放大器的热畸变既影响远场分布又对近场产生显著的调制。近场的调制会给放大器带来较大的损伤风险。为了消除热畸变对近场的调制,首先对泵浦强度分布进行了匀化,然后对介质进行了边缘热平衡控制,消除了热畸变引起的近场调制。通过对上述因素的控制,采用水冷激活镜构型的四程放大器实现了在10 Hz频率下良好运行。在没有进行主动补偿的情况下,实现了远场焦斑优于5倍衍射极限的输出。Abstract: To control the thermal wavefront distortion of repetition frequency laser, we′ve developed a water-cooled active-mirror laser amplifier, which was uniformly cooled from the rear of crystal disk. The numerical anslysis and experimental study on the characterstics of the amplifier’s thermal distortion were carried out. It was found that the thermal distorition devoted a significiant modulation to the near field of the laser when the average pump power density was as high as 200 W/cm2 with the operation frequency of 10 Hz. Near-field modulation would bring a risk to damage the amplifier. To eliminate the modulation of thermal distortion in the near field, two approaches were taken. Firstly, the pump intensity distribution was homogenized, then the edge thermal balance control was carried out. The near field modulation from thermal wavefront distortion was eliminated by these means, a four-pass amplifier with water-cooled laser heads ran well at 10 Hz. The focal spot of output laser was smaller than 5 diffraction limits without any compensation.
-
Key words:
- laser amplifiers /
- diode-pumped lasers /
- thermal effects /
- water-cooled active mirror
-
Table 1. Diode pumped active mirror lasers of several institutions
institution pump power denisity/(W·cm−2) energy of single laser pulse/ J output frequency/ Hz cooling condition LULI, France 32 14 2 room temperature 55 30 10 cryogenic temperature Osaka University, Japan[8] 55 1 100 cryogenic temperature Industrial Development Center,Japan[9] 37.5 11.5 10 cryogenic temperature Colorado State University, USA[10] 504 1.5 500 cryogenic temperature Tsinghua University, China[11] 12 12 10 room temperature Laser Fusion Research Center
of CAEP, China20 8.5[12] 1 room temperature -
[1] Bourdet G. Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials[J]. Opt Commun, 2001, 200: 331-342. doi: 10.1016/S0030-4018(01)01622-4 [2] Yu Haiwu, Duan Wentao, Xu Meijian, et al. Review of ytterbium-doped laser materials[J]. Laser &Optoelectronics Progress, 2007, 44(5): 30-41. [3] Bayramian A, Armstrong P, Ault E, et al. The Mercury project: A high average power, gas-cooled laser for inertial fusion energy development[J]. Fus Sci Technol, 2007, 52: 383-387. doi: 10.13182/FST07-A1517 [4] Dong Jun, Bass Michael, Mao Yanli, et al. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 2003, 20(9): 1975-1979. doi: 10.1364/JOSAB.20.001975 [5] Gonçalvès-Novo T, Albach D, Vincent B, et al. 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855-866. doi: 10.1364/OE.21.000855 [6] Marrazzo S, Gonçalvès-Novo T, Millet F, et al. Low temperature diode pumped active mirror Yb3+: YAG disk laser amplifier studies[J]. Optics Express, 2016, 24(12): 12651-12660. doi: 10.1364/OE.24.012651 [7] Mason P, Divoký M, Butcher T, et al. Commissioning of a kW-class nanosecond pulsed DPSSL operating at 105 J, 10 Hz [C]//Proceedings of the SPIE. 2017: 102380H. [8] Iyama K, Tokita S, Kawashim T, et al. Development of sub-ns, 1 J Yb: YAG TRAM multipass amplifier[C]//HEC-DPSSL. 2017. [9] Kabeya Y, Morita T, Hatano Y, et al. Development of a 10-J, 10-Hz laser amplifier system with cryo-cooled Yb: YAG ceramics using active-mirror method [C]//Proc of SPIE. 2019: 108960M. [10] Han Chi, Baumgarten C M, Jankowska E, et al. Thermal behavior characterization of a kilowatt-power-level cryogenically cooled Yb: YAG active mirror laser amplifier[J]. Journal of the Optical Society of America B, 2019, 36(4): 1084-1090. doi: 10.1364/JOSAB.36.001084 [11] Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981 [12] Zheng Jiangang, Jiang Xinying, Yan Xiongwei, et al. Progress of the 10 J water-cooled Yb: YAG laser system in RCLF[J]. High Power Laser Science and Engineering, 2014, 2: e27. doi: 10.1017/hpl.2014.29 [13] Jiang Xinying, Yan Xiongwei, Wang Zhenguo, et al. Influence of thermal reduced depolarization on a repetition-frequency laser amplifier and compensation[J]. High Power Laser Science and Engineering, 2015, 3: e9. doi: 10.1017/hpl.2015.4