[1] |
Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics and Laser Technology, 2012, 44(7): 2095-2099. doi: 10.1016/j.optlastec.2012.03.020
|
[2] |
Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 2005, 19(1): 25-31. doi: 10.1089/end.2005.19.25
|
[3] |
Leindecker L, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 2012, 20(7): 7046-7053. doi: 10.1364/OE.20.007046
|
[4] |
Gomes L A, Orsila L, Jouhti T, et al. Picosecond SESAM-based ytterbium mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 129-136. doi: 10.1109/JSTQE.2003.822918
|
[5] |
Sobon G, Sotor J, Pasternak I, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 2013, 21(10): 127971-127976.
|
[6] |
Meng Yafei, Li Yao, Xu Yongbing, et al. Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range[J]. Science Reports, 2017, 7: 45109. doi: 10.1038/srep45109
|
[7] |
Luo Yongfeng, Zhou Yan, Tang Yulong, et al. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets[J]. Laser Physics Letters, 2017, 14: 110002. doi: 10.1088/1612-202X/aa7d82
|
[8] |
Sotor J, Sobon J, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888. doi: 10.1364/OL.40.003885
|
[9] |
Luo Zhichao, Liu Meng, Liu Hao, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24): 5212-5215. doi: 10.1364/OL.38.005212
|
[10] |
Girish S G, Min G J, Shin K Y, et al. Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems[J]. ACS Nano, 2019. doi: 10.1021/acsnano.9b06732
|
[11] |
Zhou Kaizhe, Zhao Min, Chang Mengjie, et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 2014, 11(6): 694-701.
|
[12] |
Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Physical Review B, 2013, 88: 085318. doi: 10.1103/PhysRevB.88.085318
|
[13] |
Chen Bohua, Zhang Xiaoyan, Wu Kan, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
|
[14] |
Cheng Chen, Liu Hongliang, Tan Yang, et al. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide[J]. Optics Express, 2016, 24(10): 10385-10390. doi: 10.1364/OE.24.010385
|
[15] |
Liu Xinxing, Zhang Shuaiyi, Yan Zhengyu, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr: LLF laser at 2.95 μm[J]. Optical Materials Express, 2018, 8(5): 1213-1220. doi: 10.1364/OME.8.001213
|
[16] |
Huang Y H, Chen R S, Zhang J R, et al. Electronic transport in NbSe2 two-dimensional nanostructures: Semiconducting characteristics and photoconductivity[J]. Nanoscale, 2015, 7: 18964. doi: 10.1039/C5NR05430C
|
[17] |
Guo Jiahao, Shi Yantao, Zhu Chao, et al. Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1: 11874. doi: 10.1039/c3ta12349a
|
[18] |
Kumagai N, Tanno K. Kinetic and structural characteristics of 3R-niobium disulfide as a positive material for secondary lithium batteries[J]. Electrochimica Acta, 1991, 36: 935. doi: 10.1016/0013-4686(91)85297-K
|
[19] |
Shi Yiyuan, Long Hui, Liu Shunxiang, et al. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6: 12638-12642. doi: 10.1039/C8TC04635B
|
[20] |
Shi Yiyuan, Liu Wenjia, Lü Wei, et al. Passively Q-switched Er-doped fiber laser based on NbSe2 quantum dot saturable absorber[C]//Asia Communications and Photonics Conference. 2018.
|
[21] |
Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100. doi: 10.1364/OE.14.010095
|
[22] |
Tian Zhen, Wu kan, Kong Lingchen, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12: 065104. doi: 10.1088/1612-2011/12/6/065104
|
[23] |
Jackson S D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Optics Communications, 2004, 230(1/3): 197-203.
|
[24] |
Tang Y L, Xu J Q, Chen W, et al. 150-W Tm3+-doped fiber lasers with different cooling techniques and output couplings[J]. Chinese Physics Letters, 2010, 27: 104207. doi: 10.1088/0256-307X/27/10/104207
|
[25] |
Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 1993, 18: 1080-1082. doi: 10.1364/OL.18.001080
|
[26] |
Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.
|
[27] |
Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 1973, 23: 142-144. doi: 10.1063/1.1654836
|
[28] |
Huang Chongyuan, Wang Cong, Shang Wei, et al. Developing high energy dissipative soliton fiber lasers at 2 micron[J]. Science Reports, 2015, 5: 13680. doi: 10.1038/srep13680
|