留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄线宽光纤激光器在1 030 nm波段实现3 kW近衍射极限输出

楚秋慧 舒强 林宏奂 陶汝茂 颜冬林 王建军 景峰

楚秋慧, 舒强, 林宏奂, 等. 窄线宽光纤激光器在1 030 nm波段实现3 kW近衍射极限输出[J]. 强激光与粒子束, 2020, 32: 011005. doi: 10.11884/HPLPB202032.190463
引用本文: 楚秋慧, 舒强, 林宏奂, 等. 窄线宽光纤激光器在1 030 nm波段实现3 kW近衍射极限输出[J]. 强激光与粒子束, 2020, 32: 011005. doi: 10.11884/HPLPB202032.190463
Chu Qiuhui, Shu Qiang, Lin Honghuan, et al. All-fiber narrow linewidth fiber laser achieved 3 kW near diffraction limited output at 1 030 nm[J]. High Power Laser and Particle Beams, 2020, 32: 011005. doi: 10.11884/HPLPB202032.190463
Citation: Chu Qiuhui, Shu Qiang, Lin Honghuan, et al. All-fiber narrow linewidth fiber laser achieved 3 kW near diffraction limited output at 1 030 nm[J]. High Power Laser and Particle Beams, 2020, 32: 011005. doi: 10.11884/HPLPB202032.190463

窄线宽光纤激光器在1 030 nm波段实现3 kW近衍射极限输出

doi: 10.11884/HPLPB202032.190463
基金项目: 国家重点研发计划项目(2017YFB1104401)
详细信息
    作者简介:

    楚秋慧(1992—),女,博士,主要从事高功率光纤激光技术研究;chuqiuhui@163.com

    通讯作者:

    颜冬林(1990—),男,博士,主要从事高功率光纤激光技术研究;ydlyy10000@live.com

  • 中图分类号: O439

All-fiber narrow linewidth fiber laser achieved 3 kW near diffraction limited output at 1 030 nm

  • 摘要: 基于大模场面积掺镱光纤搭建了全光纤1 030 nm高功率窄线宽光纤激光主振荡功率放大系统,实现了3 004 W的最高功率输出,斜率效率69.27%,是目前报道的输出功率最高的1 030 nm波段近衍射极限光纤激光器。最高输出功率时,xy方向的光束质量因子分别为1.169,1.174,3 dB光谱宽度为0.18 nm,放大自发辐射抑制比达到37 dB。
  • 图  1  (a)光纤激光器中放大级的功率输出曲线和(b)不同输出功率下的输出光谱

    Figure  1.  Output of fiber laser and (a) output power of amplifier stage, (b) Spectra of various output power

    图  2  1 030 nm窄线宽光纤激光器不同输出功率下的光束质量

    Figure  2.  Beam quality varies with output power for the 1030 nm narrow linewidth fiber laser

  • [1] 周翠云, 刘源, 杜松涛, 等. 1 030 nm高重复频率纳秒脉冲全光纤放大器[J]. 中国激光, 2011, 38:0802010. (Zhou Cuiyun, Liu Yuan, Du Songtao, et al. 1 030 nm high repetition rate nanosecond pulse all fiber amplifier[J]. Chinese Journal of Lasers, 2011, 38: 0802010
    [2] Tao R M, Ma P F, Wang X L, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. IEEE Journal of Quantum Electronics, 2015, 51(8): 1-6.
    [3] 孙殷宏, 柯伟伟, 冯昱骏, 等. 1 030 nm千瓦级掺镱光纤窄线宽激光放大器[J]. 中国激光, 2016, 43:0601003. (Sun Yinhong, Ke Weiwei, Feng Yujun, et al. 1 030 nm kilowatt-level ytterbium-doped narrow linewidth fiber amplifier[J]. Chinese Journal of Lasers, 2016, 43: 0601003
    [4] Naderi A N, Dajani I, Flores A. High-efficiency, kilowatt 1 034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021. doi: 10.1364/OL.41.001018
    [5] Stiles E. New developments in IPG fiber laser technology[C]//5th International Workshop on Fiber Lasers. 2009.
    [6] Tao R M, Wang X L, Zhou P, et al. Comprehensive theoretical study of mode instability in high power fiber lasers by employing a universal model and its implications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24: 0903319.
    [7] Zhou P, Xiao H, Leng J Y, et al. High-power fiber lasers based on tandem pumping[J]. Journal of the Optical Society of America B, 2017, 34(3): A29.
    [8] Huang Y, Edgecumbe J, Ding J, et al. Performance of kW class fiber amplifiers spanning a broad range of wavelengths: 1 028-1 100 nm[C]//Fiber Lasers XI: Technology, Systems, and Applications. 2014.
    [9] Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]//Fiber Lasers XIII: Technology, Systems, and Applications. 2016.
  • 加载中
图(2)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  476
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 修回日期:  2019-12-15
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回