留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率激光装置光束精密调控性能研究进展

郑万国 李平 张锐 张颖 邓学伟 许党朋 黄小霞 王芳 赵军普 韩伟

郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32: 011003. doi: 10.11884/HPLPB202032.190469
引用本文: 郑万国, 李平, 张锐, 等. 高功率激光装置光束精密调控性能研究进展[J]. 强激光与粒子束, 2020, 32: 011003. doi: 10.11884/HPLPB202032.190469
Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003. doi: 10.11884/HPLPB202032.190469
Citation: Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003. doi: 10.11884/HPLPB202032.190469

高功率激光装置光束精密调控性能研究进展

doi: 10.11884/HPLPB202032.190469
基金项目: 国家自然科学基金项目(11404306);中国工程物理研究院院长基金项目(YZ1602)
详细信息
    作者简介:

    郑万国(1966—),研究员,主要从事高功率固体激光技术与工程研究;wgzheng_caep@sina.com

  • 中图分类号: TN248

Progress on laser precise control for high power laser facility

  • 摘要: 光束精密调控是惯性约束聚变(ICF)研究对激光驱动器的基本需求,它是一项装置层面的系统工程。主要介绍了中国工程物理研究院激光聚变研究中心近年来在靶面光强控制、脉冲波形控制、光束近场控制以及在新型光束探索方面所取得的重要进展。
  • 图  1  基于“CPP+SSD+PS”技术的靶面光强控制原理示意图

    Figure  1.  Schematic diagram of focal-plane irradiance based on “CPP+SSD+PS” technology

    图  2  应用于主机装置的单束束匀滑技术

    Figure  2.  Single beam smoothing technology applied to the laser facility

    图  3  单束束匀滑技术在靶面光强上的控制效果

    Figure  3.  Effect of single beam smoothing technology on the target irradiation

    图  4  基于子束独立调控实现集束优化输出的示意图

    Figure  4.  Schematic diagram of optimizing bundle output based on independent beams

    图  5  集束焦斑中光束叠加区域的干涉条纹特性

    Figure  5.  Characterisitcs of interference fringes in the area of focal spot superposition for bundle laser

    图  6  不同子束组合形成焦斑的散斑分布(a)与(b)为同子束F数,不同集束F数的对比,(b)与(c)为同集束F数不同子束F数的对比

    Figure  6.  Speckle distribution comparison of focal spots formed by different beams combinations: (a) and (b) have the same F number of beams but different bundle F number, (b) and (c) have the same bundle F number but different beams, F number

    图  7  单束束匀滑和集束束匀滑性能的对比(a)加CPP的单束焦斑,(b)加CPP和SSD的单束焦斑,(c)加CPP和SSD的3×3阵列集束焦斑

    Figure  7.  Comparison of focal-plane irradiance distribution between single beam and 3×3 array bundle: (a) the focused single beam with a CPP, (b) the focused single beam with a CPP and SSD (c) the focused 3×3 array bundle beam with CPPs and SSD

    图  8  脉冲精密整形控制原理示意图

    Figure  8.  Schematic diagram of pulse precision shaping control principle

    图  9  神光系列装置物理实验中的整形脉冲输出(a)冲击点火脉冲(b)三台阶脉冲(c)黑腔恒温脉冲(d)t4指数脉冲

    Figure  9.  Illustration of the broad range of pulse shapes applied to physical experiments in Shenguang (SG) series facilities: (a) high-contrast shock ignition pulse shape, (b) three-steps pulse shape, (c) hohlraum constant temperature pulse shape, (d) exponential (t4) pulse shape

    图  10  基于ITB装置演示的点火脉冲控制精度

    Figure  10.  Pulse control accuracy under ignition pulse output based on ITB facility

    图  11  基于双折射偏振滤波技术补偿幅频效应的效果(a)补偿前脉冲波形(b)补偿后脉冲波形

    Figure  11.  Compensation effect of FM-to-AM based on birefringent polarization filtering technology: (a) pulse waveform before compensation, (b) pulse waveform after compensation

    图  12  (a)SSD光束聚焦示意图(b)SSD光束远场和近场的FM-to-AM对比

    Figure  12.  (a) Schematic diagram of SSD beam focusing and (b) comparison of FM-to-AM between beam far-field and near-field for an SSD beam

    图  13  高功率激光装置光束近场整形控制示意图

    Figure  13.  Beam shaping control diagram in near field of high power laser facility

    图  14  点火脉冲输出下光束近场整形控制性能(a)基频光束近场,(b)三倍频光束近场,(c)基频光束通量直方图,(d)三倍频光束通量直方图

    Figure  14.  Near-field beam profiles of measurement: (a) 1ω laser and (b) 3ω laser at ignition pulse output based on ITB facility, (c) and (d) are the probability density functions of the fluence for (a) and (b) respectively

    图  15  复合波长小尺度自聚焦的增益系数曲线

    Figure  15.  Square of nonlinear spatial spectrum′s gain for high-power lasers with two-wavelengths

    图  16  (a)复合波长强激光在非线性介质中传输的演化示意图(b)输出光束的一维近场强度分布

    Figure  16.  (a) Schematic diagram of nonlinear propagation of two-wavelength beams in medium and (b) intensity lineout across the output near-field image of the two-wavelength beams

    图  17  (a)研制的位相缺陷检测平台(b)典型的位相缺陷检测数据

    Figure  17.  (a) Phase defect detection platform and (b) typical detection data

    图  18  位相缺陷点引入的强激光传输特性

    Figure  18.  Intense laser propagation characteristics introduced by phase defect point

    图  19  (a)激光通过黑腔LEH传输至腔壁示意图(b)光束在黑腔中传输交叠示意图

    Figure  19.  (a) Approximation of beam propagation in hohlraum. (b) Two overlapped beams pass through the LEH and reach the hohlraum wall (Beam overlapping volume is emphasized with dark color)

    图  20  用于减少光束交叠的异型焦斑设计思想示意图

    Figure  20.  Some focal spots, including circular spot, elliptical spot and special shape spot, are proposed to reduce the degree of beam overlap. The dashed circle shows the maximal area limited by LEH

    图  21  (a)异型焦斑的CPP面型设计和(b)获得的异型焦斑分布

    Figure  21.  (a) The designed CPP that produces a super-Gaussian of order sg=6 with special laser spot in the far field. (b) Speckled far-field intensity patterns produced by the full aperture illumination of the CPP

    图  22  光束通过偏振元件后的偏振分布(a)楔形偏振晶体(b)具有随机位相分布的晶体

    Figure  22.  Polarization distribution of beam passing through polarization plate. (a) wedge polarization crystal, (b) crystal with random phase distribution

    图  23  不同偏振匀滑形式对应的焦斑PSD曲线

    Figure  23.  Focal spot PSDs corresponding to different polarization smoothing

  • [1] Basov N G, Krohkin O H. The conditions of plasma heating by optical generation of radiation[C]//Proceedings of the 3rd International Congress on Quantum Electronics, 1963.
    [2] 王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 中国激光, 1987, 14(11):641-645. (Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 14(11): 641-645 doi: 10.3321/j.issn:0258-7025.1987.11.001
    [3] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [4] Moses E, Wuest C R. The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies[J]. Fusion Science and Technology, 2003, 43: 420. doi: 10.13182/FST43-420
    [5] André M L. The French Megajoule Laser Project (LMJ)[J]. Fusion Engineering and Design, 1999, 44(1/4): 43-49.
    [6] 魏晓峰, 郑万国, 张小民. 中国高功率固体激光技术发展中的两次突破[J]. 物理, 2018, 47(2):73-83. (Wei Xiaofeng, Zheng Wanguo, Zhang Xiaomin. Two breakthroughs in the development of high power solid-state laser technology in China[J]. Physics, 2018, 47(2): 73-83 doi: 10.7693/wl20180202
    [7] 马腾才. 等离子体物理原理[M]. 合肥: 中国科学技术大学出版社, 1988.

    Ma Tengcai. Principles of plasma physics[M]. Hefei: University of Science and Technology of China Press, 1988
    [8] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [9] Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [10] Wilcox R B, Behrendt W, Browning D F, et al. Fusion laser oscillator and pulse-forming system using integrated optics[C]//Proc of SPIE. 1993, 1870: 53-63.
    [11] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [12] Heebner J, Borden M, Miller P, et al. A programmable beam shaping system for tailoring the profile of high fluence laser beams[C]//Proc of SPIE. 2010, 7842: 40.
    [13] Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 1996, 21(20): 1703-1705. doi: 10.1364/OL.21.001703
    [14] Regan S P, Marozas J A, Craxton R S, et al. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of the Optical Society of America B Optical Physic, 2005, 22(5): 998-1002. doi: 10.1364/JOSAB.22.000998
    [15] Rothenberg J E. Polarization beam smoothing for inertial confinement fusion[J]. Journal of Applied Physics, 2000, 87(8): 3654-3662. doi: 10.1063/1.372395
    [16] Moody J D, Macgowan B J, Rothenberg J E, et al. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Physical Review Letters, 2001, 86(13): 2810-2813. doi: 10.1103/PhysRevLett.86.2810
    [17] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [18] Zhang R, Jia H, Tian X, et al. Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing[J]. Optics and Lasers in engineering, 2016, 85: 38-47. doi: 10.1016/j.optlaseng.2016.04.015
    [19] 李平, 贾怀庭, 王芳, 等. 神光Ⅲ原型装置中连续相位板的应用位置分析[J]. 中国激光, 2009, 36(2):318-323. (Li Ping, Jia Huaiting, Wang Fang, et al. Analysis of continuous phase plates applying position for TIL facility[J]. Chinese Journal of Lasers, 2009, 36(2): 318-323
    [20] 刘兰琴, 张颖, 耿远超, 等. 小宽带光谱色散匀滑光束传输特性研究[J]. 物理学报, 2014, 63:164201. (Liu Lanqin, Zhang Ying, Geng Yuanchao, et al. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system[J]. Acta Physica Sinica, 2014, 63: 164201 doi: 10.7498/aps.63.164201
    [21] 李平, 粟敬钦, 马驰, 等. 光谱色散匀滑对焦斑光强频谱的影响[J]. 物理学报, 2009, 58(9):6210-6215. (Li Ping, Su Jingqin, Ma Chi, et al. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot[J]. Acta Physics Sinica, 2009, 58(9): 6210-6215 doi: 10.3321/j.issn:1000-3290.2009.09.052
    [22] Zhang Rui, Su Jingqin, Yuan Haoyu, et al. Research of beam conditioning technologies on SG-III laser facility[C]//Proc of SPIE, 2014, 9293: 92930E.
    [23] Zhang R, Su J, Wang J, et al. Experimental research on the influences of smoothing by spectral dispersion on the Technical Integration Line[J]. Applied Optics, 2011, 50(5): 687-695. doi: 10.1364/AO.50.000687
    [24] Zheng W, Wei X, Zhu Q, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter Radiat Extrem, 2017, 2: 243-255. doi: 10.1016/j.mre.2017.07.004
    [25] Hao L, Zhao Y, Yang D, et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SGIII prototype facility with a spectral analysis code[J]. Phys Plasmas, 2014, 21: 072705. doi: 10.1063/1.4890019
    [26] Lan K, Li Z, Xie X, et al. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target[J]. Phys Rev E, 2017, 95: 031202. doi: 10.1103/PhysRevE.95.031202
    [27] Dewald E L, Glenzer S H, Landen O L, et al. First laser–plasma interaction and hohlraum experiments on the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B405-B417. doi: 10.1088/0741-3335/47/12B/S29
    [28] 郑天然, 张颖, 耿远超, 等. 基于集束多频调制的光谱色散匀滑技术[J]. 中国激光, 2017, 44:1205003. (Zheng Tianran, Zhang Ying, Geng Yuanchao, et al. Smoothing by spectral dispersion technology based on bundle multiple-frequency modulation[J]. Chinese Journal of Lasers, 2017, 44: 1205003
    [29] Jones O S, Speck D R, Williams W H, et al. The NIF’s power and energy ratings for ICF-shaped pulses[C]//Proc of SPIE. 1998, 3492: 49-54
    [30] Hu Dongxia, Dong Jun, Xu Dangpeng, et al. Generation and measurement of complex laser pulse shapes in the SG-III laser facility[J]. Chinese Optics Letters, 2015, 13: 041406. doi: 10.3788/COL201513.041406
    [31] Li Ping, Wang Wei, Jin Sai, et al. The shaped pulses control and operation on the SG-III prototype facility[J]. Laser physics, 2018, 28: 045004. doi: 10.1088/1555-6611/aaa9dc
    [32] Hocquet S, Penninckx D, Gleyze J F, et al. Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion[J]. Applied Optics, 2010, 49(7): 1104-1115. doi: 10.1364/AO.49.001104
    [33] Browning D F, Rothenberg J E, Wilcox R B. The issue of FM to AM conversion on the National Ignition Facility[C]//Proceedings of SPIE. 1999, 3492.
    [34] Hocquet S, Penninckx D, Bordenave E, et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 2008, 47(18): 3338-3349. doi: 10.1364/AO.47.003338
    [35] Xu D, Wang J, Li M, et al. Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems[J]. Optics Express, 2010, 18(7): 6621-6627. doi: 10.1364/OE.18.006621
    [36] Li Rao, Fan Wei, Jiang Youen, et al. Tunable compensation of GVD-induced FM–AM conversion in the front end of high-power lasers[J]. Appl Opt, 2017, 56(4): 993-998. doi: 10.1364/AO.56.000993
    [37] Li Ping, Wang Wei, Su Jingqin, et al. Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system[J]. High Power Laser Science and Engineering, 2019, 7(2).
    [38] Bagnoud V, Zuegel J D. Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator[J]. Optics Letters, 2004, 29(3): 295-297. doi: 10.1364/OL.29.000295
    [39] Bespalov V I, Talanov VI. Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett, 1966, 3(12): 307-310.
    [40] Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 1974, 23(11): 628-630.
    [41] Jokipii J R, Marburger J. Homogeneity requirements for minimizing self-focusing damage by strong electromagnetic waves[J]. Applied Physics Letters, 1974, 23(12): 696-698.
    [42] Jia Huaiting, Xu Bing, Wang Fang, et al. Small-scale self-focusing in a tapered optical beam[J]. Applied Optics, 2012, 51(25): 6089-6094. doi: 10.1364/AO.51.006089
    [43] Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of intense laser beams in the presence of vector effect[J]. Chin Phys Lett, 2000, 17(10): 731-733. doi: 10.1088/0256-307X/17/10/011
    [44] Parham T G, Azevedo S, Chang J, et al. Large aperture optics performance. 2009, LLNL-TR-410955.
    [45] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [46] 周丽丹, 贾怀庭, 韩伟, 等. 复合波长强激光小尺度自聚焦的理论研究[J]. 高能量密度科学技术, 2016, 2(4):11-17. (Zhou Lidan, Jia Huaiting, Han Wei, et al. Theoretical study on small-scale self-focusing of multi-wavelength beams[J]. High Energy Density Science and Technology, 2016, 2(4): 11-17
    [47] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Appl Opt, 1993, 32: 5973-5982. doi: 10.1364/AO.32.005973
    [48] Wang Y W, Wen S C, Zhang L F, et al. Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss[J]. Appl Opt, 2008, 47(8): 1152-1163. doi: 10.1364/AO.47.001152
    [49] Millerd J E, Brock N J, Hayes J B, et al. Modern approaches in phase measuring metrology [C]//Proc of SPIE. 2005, 5856: 13-22.
    [50] Ravizza F L, Nostrand M C, Kegelmeyer L M, et al. Process for rapid detection of fratricidal defects on optics using Linescan Phase Differential Imaging [R]. LLNL-PROC-420837, 2009.
    [51] 李平, 韩伟, 王伟, 等. 关联“热像”特性的缺陷带通成像检测技术[J]. 光学学报, 2017, 37:0914004. (Li Ping, Han Wei, Wang Wei, et al. Defect inspection by band-pass imaging related to hot image property[J]. Acta Optica Sinica, 2017, 37: 0914004
    [52] 杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48: 065203
    [53] Li Ping, Jin Sai, Zhao Runchang, et al. The special shaped laser spot for driving indirect-drive hohlraum with multi-beam incidence[J]. High Power Laser Science and Engineering, 2017, 5(3): 49-54.
    [54] 李平, 马驰, 粟敬钦, 等. 基于焦斑空间频谱控制的连续相位板设计[J]. 强激光与粒子束, 2008, 20(7):1114-1118. (Li Ping, Ma Chi, Su Jingqin, et al. Design of continuous phase plates for controlling spatial spectrum of focal spot[J]. High Power Laser and Particle Beams, 2008, 20(7): 1114-1118
    [55] 耿远超, 刘兰琴, 王文义, 等. 利用晶体相位板同时实现焦斑整形和偏振匀滑[J]. 物理学报, 2013, 62(14):145201. (Geng Yuanchao, Liu Lanqin, Wang Wenyi, et al. A new method of simultaneous focal spot shaping and polarization smoothing using crystal phase plate[J]. Acta Physica Sinica, 2013, 62(14): 145201 doi: 10.7498/aps.62.145201
    [56] 李平, 王伟, 赵润昌, 等. 基于焦斑空间频率全域优化的偏振匀设计[J]. 物理学报, 2014, 63(21):215202. (Li Ping, Wang Wei, Zhao Runchang, et al. Polarization smoothing design for improving the whole spatial frequency at focal spot[J]. Acta Physica Sinica, 2014, 63(21): 215202 doi: 10.7498/aps.63.215202
  • 加载中
图(23)
计量
  • 文章访问数:  3443
  • HTML全文浏览量:  1037
  • PDF下载量:  274
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-30
  • 修回日期:  2019-12-23
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回