Monte Carlo simulation research on reference neutron radiation of 241Am-Be radionuclide
-
摘要:
研究用于校准场所中子剂量监测仪表的241Am-Be中子参考辐射场计量特性。采用蒙特卡罗方法模拟了空气自由中子参考辐射(FRNR),GB/T 14055规定的最小尺寸中子参考辐射(SRNR)和实际中子参考辐射(ARNR)中不同检验点处中子周围剂量当量率、散射中子占比和能谱分布特征。研究结果表明,空气对FRNR中的剂量率和能谱分布影响小,近似为理想中子参考辐射;采用5%含硼聚乙烯作屏蔽的最小尺寸SRNR可减少热中子,降低散射中子占比,影锥法不适用于小尺寸中子参考辐射中对散射中子的修正;ARNR中的散射中子更少、占比更低,影锥法所得散射中子占比与理论值基本一致。
Abstract:This paper presents the study on the 241Am-Be radionuclide sources reference neutron radiation field metrology characteristics for calibrating area neutron dose monitoring instruments. The Monte Carlo method was used to simulate the neutron ambient dose equivalent rate, scattering neutron proportion and neutron energy spectrum distribution at different points of test in the air free-field reference neutron radiation (FRNR), the minimum size of standard reference neutron radiation (SRNR) specified in GB/T 14055 series standards and the actual reference neutron radiation (ARNR). The results show that air has little effect on the dose rate and energy spectrum distribution in FRNR, which is approximately an ideal reference neutron radiation; the minimum size SRNR shielded by polyethylene containing 5% boron can decrease thermal neutrons and reduce the proportion of scattered neutrons. The shadow-cone method is not suitable for the correction of scattered neutrons in small-sized reference neutron radiation; scattering neutrons in ARNR are fewer and have a lower proportion, and the proportion of scattered neutrons obtained by shadow-cone method is basically consistent with the theoretical values.
-
表 1 FRNR和空气FRNR中各检验点剂量率、空气散射贡献占比
Table 1. The dose rate of each point of test and the contribution proportion of air scattering in FRNR and air FRNR
distance/m dose rate/(μSv·h−1) ④the contribution proportion of
air scattering obtained by
shadow-cone method(③/①)/%⑤the theoretical contribution
proportion of air
scattering[(②—①)/①]/%①FRNR ②FRNR+air ③FRNR+air+
shadow cone0.75 52.01 52.24 0.70 1.35 0.44 0.85 40.49 40.69 0.52 1.28 0.49 0.95 32.42 32.59 0.42 1.30 0.52 1.05 26.53 26.69 0.36 1.36 0.60 1.15 22.12 22.26 0.32 1.45 0.63 1.25 18.72 18.85 0.28 1.50 0.69 1.35 16.05 16.17 0.25 1.56 0.75 表 2 SRNR中各检验点散射中子剂量率贡献占比(影锥法)
Table 2. The contribution proportion of scattered neutron dose rate at each point of test under SRNR (shadow-cone method)
type contribution proportion at different distance/% 0.75 m 0.85 m 0.95 m 1.05 m 1.15 m 1.25 m 1.35 m A1 8.29 10.03 11.93 14.00 16.16 18.42 20.77 A2 8.56 10.73 13.19 15.89 18.70 21.33 22.90 B1 17.11 21.27 25.80 30.70 35.94 41.52 47.57 B2 18.62 23.89 29.77 36.23 43.16 50.18 55.99 Notes:A—polyethylene containing 5% boron,B—concrete;1—half-cubical type,2—cubical type 表 3 SRNR中各检验点散射中子剂量率贡献占比(理论值)
Table 3. The contribution proportion of scattered neutron dose rate at each point of test under SRNR (theoretical value)
type contribution proportion at different distance/% 0.75 m 0.85 m 0.95 m 1.05 m 1.15 m 1.25 m 1.35 m A1 7.52 9.35 11.32 13.39 15.59 17.91 20.37 A2 8.09 10.38 13.02 16.02 19.45 23.36 27.85 B1 16.59 20.81 25.37 30.32 35.64 41.35 47.45 B2 18.70 24.05 30.21 37.24 45.34 54.72 65.89 Notes:A—polyethylene containing 5% boron,B—concrete;1—half-cubical type,2—cubical type 表 4 三种中子参考辐射中各检验点散射中子剂量率贡献占比(屏蔽材料:混凝土)
Table 4. The contribution proportion of scattered neutron dose rate at each point of test under three kinds of reference neutron radiation (shielding material:concrete)
type contribution proportion at different distance/% 0.75 m 0.85 m 0.95 m 1.05 m 1.15 m 1.25 m 1.35 m FRNR+air shadow-cone method 1.35 1.28 1.30 1.36 1.45 1.50 1.56 ARNR shadow-cone method 10.97 13.65 16.57 19.69 22.99 26.46 30.07 SRNR(1) shadow-cone method 17.11 21.27 25.80 30.70 35.94 41.52 47.57 SRNR(2) shadow-cone method 18.62 23.89 29.77 36.23 43.16 50.18 55.99 FRNR+air theoretical value 0.44 0.49 0.52 0.60 0.63 0.69 0.75 ARNR theoretical value 10.48 13.12 16.01 19.07 22.36 25.76 29.37 SRNR(1) theoretical value 16.59 20.81 25.37 30.32 35.64 41.35 47.45 SRNR(2) theoretical value 18.70 24.05 30.21 37.24 45.34 54.72 65.89 Notes:1—half-cubical type,2—cubical type -
[1] 杨元第, 李德红. 电离辐射计量发展概况[C]//辐射防护分会2012年学术年会论文集. 2012: 17-20.Yang Yuandi, Li Dehong. Development of ionizing radiation measurement[C]//Proceedings of the 2012 Annual Conference of the Radiation Protection Branch. 2012: 17-20 [2] 张辉, 樊成, 龚晓明. 采用放射性核素中子源的中子参考辐射装置[J]. 计量学报, 2011, 32(6):559-563. (Zhang Hui, Fan Cheng, Gong Xiaoming. The device of the neutron reference radiation with radionuclide neutron sources[J]. Acta Metrologica Sinica, 2011, 32(6): 559-563 doi: 10.3969/j.issn.1000-1158.2011.06.17 [3] Yun H K, Hyeonseo P, Yong K K, et al. Reference thermal neutron field at KRISS for calibration of neutron detectors[J]. Radiation Measurement, 2017, 107: 3-79. [4] Dreyzin V E, Grimov A A, Logvinov D I. Creating reference neutron fields for calibration of neutron spectrometers and computing their spectra[J]. Journal of Applied Spectroscopy, 2018, 85(4): 680-685. doi: 10.1007/s10812-018-0704-7 [5] JJG 852-2006, 中华人民共和国国家计量检定规程中子周围计量当量(率)仪[S].JJG 852-2006, People’s Republic of China national verification procedures: Neutron ambient dose equivalent(rate) meters[S] [6] David T, Roberto B, Roberto M, et al. Revision of ISO 8529—reference neutron radiations[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 21-24. [7] 李景云. 参考中子辐射与辐射防护中子测量装置校准[J]. 辐射防护通讯, 2003, 23(6):8-23. (Li Jingyun. Reference neutron radiation and calibration of measuring device for radiation protection purpose[J]. Radiation Protection Bulletin, 2003, 23(6): 8-23 doi: 10.3969/j.issn.1004-6356.2003.06.002 [8] 骆海龙, 刘毅娜, 王志强, 等. 中子剂量仪表校准的本底扣除方法研究[J]. 辐射防护, 2012, 32(5):273-276. (Luo Hailong, Liu Yina, Wang Zhiqiang, et al. Comparison of response with different background subtracting methods in neutron dosemeter calibration[J]. Radiation Protection, 2012, 32(5): 273-276 [9] Komar D, Kutsen S. Influence of scattered neutron radiation on metrological characteristics of AT140 neutron calibration facility[J]. Devices and Methods Measurements, 2017, 8(1): 23-31. [10] 霍雷, 刘剑利, 马永和. 辐射剂量与防护[M]. 北京: 电子工业出版社, 2015: 139.Huo Lei, Liu Jianli, Ma Yonghe. Radiation dose and protection[M]. Beijing: Publishing House of Electronics Industry, 2015: 139 [11] GB/T 14055.1-2008, 中子参考辐射第1部分: 辐射特性和产生方法[S].GB/T 14055.1-2008, Reference neutron radiations—Part 1: Characteristics and methods of production[S] [12] ISO 8529-1: 2001(E), Reference neutron radiations—Part 1: Characteristics and methods of production[S]. [13] GB/T 14055.2-2012, 中子参考辐射第2部分: 与表征辐射场基本量相关的辐射防护仪表校准基础[S].GB/T 14055.2-2012, Reference neutron radiations—Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field[S] [14] ISO 8529-2: 2000(E), Reference neutron radiations—Part 2: Calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field[S]. [15] 刘毅娜, 王志强, 徐科, 等. 亚太地区中子周围剂量当量(率)仪的校准比对[J]. 原子能科学技术, 2016, 50(1):181-187. (Liu Yina, Wang Zhiqiang, Xu Ke, et al. APMP key comparison for calibration of neutron ambient dose equivalent meter[J]. Atomic Energy Science and Technology, 2016, 50(1): 181-187 doi: 10.7538/yzk.2016.50.01.0181 [16] Pereira W W, Estrada J J S, Patrao K C S, et al. 241Am-Be(α, n) characterization for a new laboratory facility in Brazil[J]. Radiation Protection Dosimetry, 2018, 180(1/4): 29-32. [17] 文德智, 雷家荣, 卓仁鸿, 等. 用于中子剂量当量仪校准的同位素中子参考辐射的建立[J]. 中国核科技报告, 2005(1):119-127. (Wen Dezhi, Lei Jiarong, Zhuo Renhong, et al. The establishment of a radionuclide neutron reference radiations for calibrating neutron dose equivalent devices[J]. China Nuclear Science and Technology Report, 2005(1): 119-127 [18] The International Commission on Radiation Protection. Conversion coefficients for use in radiological protection against external radiation[R]. ICRP Publication 74, 1996: 200. [19] 陈飞达, 唐晓斌, 王鹏, 等. 基于蒙特卡罗方法的中子屏蔽材料设计[J]. 强激光与粒子束, 2012, 24(12):3006-3010. (Chen Feida, Tang Xiaobin, Wang Peng, et al. Neutron shielding material design based on Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2012, 24(12): 3006-3010 doi: 10.3788/HPLPB20122412.3006 [20] Campo X, Mendez R, Lacerda M A S, et al. Experimental evaluation of neutron shielding materials[J]. Radiation Protection Dosimetry, 2018(1/4): 382-385. [21] 周红召, 刘海侠, 李坚, 等. 中子剂量校准实验室室散射影响因素的蒙卡仿真研究[C]//第十七届全国核电子学与核探测技术学术年会论文集. 2014: 592-59.Zhou Hongzhao, Liu Haixia, Li Jian, et al. Monte Carlo simulation of factors influencing room-return in neutron calibration laboratory[C]//Proceedings of the 17th National Conference on Nuclear Electronics and Nuclear Detection Technology. 2014: 592-59