留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电枢膛内高速运动控制仿真与试验

王振春 董宗豪 鲍志勇 张玉婷 刘福才

王振春, 董宗豪, 鲍志勇, 等. 电枢膛内高速运动控制仿真与试验[J]. 强激光与粒子束, 2020, 32: 075006. doi: 10.11884/HPLPB202032.200020
引用本文: 王振春, 董宗豪, 鲍志勇, 等. 电枢膛内高速运动控制仿真与试验[J]. 强激光与粒子束, 2020, 32: 075006. doi: 10.11884/HPLPB202032.200020
Wang Zhenchun, Dong Zonghao, Bao Zhiyong, et al. Simulation and experimental study on high velocity control of armature in bore[J]. High Power Laser and Particle Beams, 2020, 32: 075006. doi: 10.11884/HPLPB202032.200020
Citation: Wang Zhenchun, Dong Zonghao, Bao Zhiyong, et al. Simulation and experimental study on high velocity control of armature in bore[J]. High Power Laser and Particle Beams, 2020, 32: 075006. doi: 10.11884/HPLPB202032.200020

电枢膛内高速运动控制仿真与试验

doi: 10.11884/HPLPB202032.200020
基金项目: 河北省自然科学基金项目(E2017203298)
详细信息
    作者简介:

    王振春(1979—),男,博士,副研究员,研究方向:电磁发射控制技术;zcwang@ysu.edu.cn

  • 中图分类号: TM 153

Simulation and experimental study on high velocity control of armature in bore

  • 摘要: 电磁轨道发射的过程中,电枢在膛内高速运动时会受到电磁力、电枢初始正压力、摩擦力、空气阻力、烧蚀阻力等多种因素影响,电枢的出口速度呈现出在一定范围内波动的特征。为了提高电枢的出口速度精度,针对膛内电枢与轨道摩擦不均衡性和烧蚀程度不确定的特性,综合考虑脉冲成形网络的电路模型与电枢的动力学特征,建立了电枢在膛内的运动开环控制仿真模型。通过仿真,得出了脉冲电源模块触发时刻与电枢出口速度之间的关系,提出了电枢出口速度闭环控制模型,探究了电枢出口速度控制可行方案。结果表明:应用闭环控制算法,可实现对电枢出口速度的精确控制。
  • 图  1  脉冲成形网络电路

    Figure  1.  Multi-module circuit diagram

    图  2  不同触发时刻下电流与速度曲线

    Figure  2.  Time series current and velocity waveform diagram of different spaced discharge

    图  3  第二组脉冲电源模块触发时刻${T_{{\rm{trig}}}}$与电枢出口速度之间的关系

    Figure  3.  Relationship between trigger time and muzzle velocity

    图  4  n次测速反馈构成的闭环系统

    Figure  4.  A closed-loop system composed of n times of speed measurement feedback

    图  5  开环与闭环电枢速度对比

    Figure  5.  Comparison of open-loop and closed-loop armature velocity

    图  6  电枢初始正压力

    Figure  6.  Armature initial positive pressure for experiments

    图  7  开环控制与闭环控制速度对比图

    Figure  7.  Muzzle velocity comparison between open-loop control and closed-loop control

    表  1  实验结果

    Table  1.   Results of experiments

    initial positive
    pressure/kN
    test situationrail length/mcharging voltage/kVtrigger time of the first
    group of modules/μs
    trigger time of the second
    group of modules/ms
    1.0open loop control21.502.3
    1.5open loop control21.502.3
    1.5closed loop control21.50calculated Ttrig
    下载: 导出CSV

    表  2  开环控制与闭环控制速度误差表

    Table  2.   Speed error table of open-loop control and closed-loop control

    number of experimentsopen loop simulation muzzle velocity/(m·s−1simulation relative error/%closed loop simulation muzzle velocity/(m·s−1simulation relative error/%
    1 762.8 −0.188 764.5 0.042
    2 753.7 −1.407 764.6 0.054
    3 742.0 −2.975 763.8 −0.050
    4 760.2 −0.536 764.6 0.055
    5 752.4 −1.581 764.3 0.018
    6 761.5 −0.362 763.8 −0.054
    7 740.7 −3.149 763.9 −0.030
    8 745.9 −2.452 764.2 0.006
    9 757.6 −0.885 764.6 0.061
    10 739.4 −3.324 764.6 0.062
    11 751.1 −1.756 763.8 −0.046
    12 744.6 −2.627 764.7 0.063
    13 758.9 −0.710 764.6 0.061
    14 738.1 −3.498 764.2 −0.002
    15 755.9 −1.108 764.5 0.040
    16 747.2 −2.278 763.8 −0.048
    17 749.8 −1.930 764.1 −0.010
    18 743.3 −2.800 764.6 0.056
    19 756.3 −1.059 764.5 0.039
    20 748.5 −2.100 764.6 0.062
    下载: 导出CSV
  • [1] Li Jun, Li Shizhong, Liu Peizhu, et al. Design and testing of a 10-MJ electromagnetic launch facility[J]. IEEE Trans Plasma Science, 2011, 39(4): 1187-1191. doi: 10.1109/TPS.2011.2110649
    [2] Wang Ying, Chen Shukang, Zheng Ping. Widely developing electric launch technology in China[J]. IEEE Trans Magnetics, 2003, 39(1): 39-41. doi: 10.1109/TMAG.2002.805914
    [3] 关永超, 邹文康, 何勇, 等. 串联型双轨增强电磁轨道炮电路模拟[J]. 强激光与粒子束, 2014, 26:115001. (Guan Yongchao, Zou Yongkang, He Yong, et al. Circuit simulation of series double rail enhanced electromagnetic railgun[J]. High Power Laser and Particle Beams, 2014, 26: 115001
    [4] 赵莹, 徐蓉, 袁伟群, 等. 脉冲大电流电磁轨道发射装置特性[J]. 强激光与粒子束, 2014, 26:095004. (Zhao Ying, Xu Rong, Yuan Weiqun, et al. Characteristics of high current pulse electromagnetic track launcher[J]. High Power Laser and Particle Beams, 2014, 26: 095004
    [5] 刘福才, 王世国, 王振春, 等. 电磁发射测量系统的设计与实现[J]. 兵工学报, 2008, 29(10):1256-1261. (Liu Fucai, Wang Shiguo, Wang Zhenchun, et al. Design and realization of an electromagnetic launch measurement system[J]. Acta Armamentarii, 2008, 29(10): 1256-1261 doi: 10.3321/j.issn:1000-1093.2008.10.021
    [6] 何勇, 宋盛义, 关永超, 等. 电磁轨道炮高速滑动接触电阻的定量表征[J]. 强激光与粒子束, 2014, 26:045007. (He Yong, Song Shengyi, Guan Yongchao, et al. Quantitative expression of sliding contact resistance between armature and rail in railgun[J]. High Power Laser and Particle Beams, 2014, 26: 045007
    [7] 徐伟东, 袁伟群, 陈允, 等. 电磁轨道发射器连续发射的滑动电接触[J]. 强激光与粒子束, 2012, 24(3):668-672. (Xu Weidong, Yuan Weiqun, Chen Yun, et al. Sliding electrical contact performance of electromagnetic launcher system in rapid fire mode[J]. High Power Laser and Particle Beams, 2012, 24(3): 668-672 doi: 10.3788/HPLPB20122403.0668
    [8] Stefani F, Parker J V, Watt T. Progress on developing the “magnetic obturator”, a novel railgun armature[J]. IEEE Trans Magnetics, 2003, 39(1): 86-91. doi: 10.1109/TMAG.2002.805889
    [9] Fair H D. Progress in electromagnetic launch science and technology[J]. IEEE Trans Magnetics, 2007, 43(1): 93-98. doi: 10.1109/TMAG.2006.887596
    [10] Wang Min, Cao Yanjie, Wang Chenxue, et al. Trigger control research of electromagnetic coil launcher based on real-time velocity measurement[J]. IEEE Trans Plasma Science, 2016, 44(5): 885-888. doi: 10.1109/TPS.2016.2535409
    [11] Siaenen T, Schneider M G, Loffler M J. Rail gun muzzle velocity control with high accuracy[J]. IEEE Trans Plasma Science, 2011, 39(1): 133-137. doi: 10.1109/TPS.2010.2052072
    [12] Batteh J H. Arc-dynamics calculations in the railgun[R]. Georgia: Science Applications, 1983.
    [13] Batteh J H, Powell J D. Analysis of plasma arcs in arc-driven railgun[J]. IEEE Trans Magnetics, 1984, 20(2): 336-339. doi: 10.1109/TMAG.1984.1063098
    [14] Su Zizhou, Guo Wei, Zhang Tao, et al. Design and simulation of a large muzzle kinetic energy railgun[J]. IEEE Trans Plasma Science, 2013, 41(5): 1416-1420. doi: 10.1109/TPS.2013.2251364
    [15] 王振春, 鲍志勇, 曹海要, 等. 增强型电磁轨道炮电枢轨道接触特性研究[J]. 兵工学报, 2018, 39(3):451-456. (Wang Zhenchun, BaoZhiyong, Cao Haiyao, et al. Research on contact characteristics of armature and rail in augmented electromagnetic railgun[J]. Acta Armamentarii, 2018, 39(3): 451-456 doi: 10.3969/j.issn.1000-1093.2018.03.005
    [16] 靳智, 沈培辉, 刘凯. 电磁轨道炮电枢的运动特性研究[J]. 兵工自动化, 2013(12):1-3, 32. (Jin Zhi, Shen Peihui, Liu Kai. Research on kinetic characteristic of armature of electromagnetic rail gun[J]. Ordnance Industry Automation, 2013(12): 1-3, 32 doi: 10.7690/bgzdh.2013.12.001
    [17] 王莹, 肖峰. 电磁炮原理[M]. 北京: 国防工业出版社, 1995: 2-40.

    Wang Ying, Xiao Feng. Principle of electromagnetic gun[M]. Beijing: National Defense Industry Press, 1995: 2-40
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1194
  • HTML全文浏览量:  192
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-05-13
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回