Experiment study of extended X-ray absorption fine structure spectrum on SG-III prototype facility
-
摘要:
介绍了在大型激光装置上进行 扩展X射线吸收精细结构(EXAFS)谱压缩物态参数测量的基本原理,以及为获得高质量EXAFS谱在神光III原型装置上进行的实验研究。实验采用玻璃靶球、CH靶丸和金球作为EXAFS谱测量的背光源,通过多发次叠加、光子数累积的方法获得了信噪比良好的金属Ti在常温常压下的EXAFS谱,数据处理结果表明,实验测得的金属Ti EXAFS谱拟合结果与同步辐射实验拟合结果相吻合,表明实验设计的正确性与可靠性。对实验结果的分析表明,影响EXAFS谱质量的因素主要是光子计数、测量系统谱分辨率、噪声以及实验器件上的瑕疵。
-
关键词:
- 扩展X射线吸收精细结构 /
- X射线源 /
- 大型激光装置 /
- 压缩物态 /
- SGIII原型
Abstract:This article intoduces the principle of extended X-ray absorption fine structure(EXAFS) as parameter diagnostic method on large laser facilities, as well as the experiments on SG-III prototype facility for high quality EXAFS. Using glass ball, CH capsule and Au ball as backlighters, through multi-shots accumulation method, EXAFS of Ti in ambient condition with good signal-to-noise ratio were obtained. The experiment results coincide well with the results of the synchrotron radiation experiment, indicating the correctness and reliability of the experimental design. Analysis of the results show the factors affecting the EXAFS spectrum quality are photon counts, spectral resolution, noise and flaws on apparatuses.
-
Key words:
- EXAFS /
- X-ray source /
- laser facility /
- compression /
- SG-III prototype
-
表 1 X射线源参数及实验结果
Table 1. Parameters of X-ray source and results of experiments
measurement shot number target diameter/μm wall/μm total energy/J results 1 shot255 16A-II-9# 423 1.82 6 168 EXAFS not detected 2 shot256 16A-II-10# 426 1.95 5 839 EXAFS detected shot257 16A-I-19# 435 1.8 6 076 shot258 16A-I-17# 441 2.19 5 958 3 shot259 Au ball 300 / 624 EXAFS detected shot260 16A-I-18# 445 1.96 5 861 4 shot263 Au ball 300 / 1 175 EXAFS detected,no fine structure shot264 773 5 shot265 16A-III-15# 461 2.21 4 562 EXAFS detected shot266 16A-III-12# 463 1.81 5 191 6 shot267 16B-II-1# 409 16.4 5 982 EXAFS not detected 7 shot268 16B-I-4# 425 15.8 5 834 8 shot269 16B-II-2# 409 17.0 6 165 9 shot270 16B-II-3# 415 16.5 5 840 Note:A is glass ball,B is CH capsule. I,II,III correspond to Ar atomic ratio of 0%,1%,5%,respectively. Pressure in glass balls and capsules is 1.0 MPa。 表 2 测量3、测量5和同步辐射拟合结果比较
Table 2. Comparison of measurements 3,5 and synchrotron data fitting results
measurements R/(0.1 nm) σ2/(0.1 nm)2 measurement 3 2.865±0.005 0.007 6±0.004 measurement 5 2.866±0.030 0.006 8±0.008 synchrotron 2.869±0.002 0.006 2±0.000 3 01 专辑主题
(1) 高能量密度物理现象与物质特性
(2) 惯性约束聚变物理
(3) 强激光驱动粒子加速及新型辐射源
(4) 超强激光与物质相互作用
(5) 高能量密度物理加载及诊断技术
02 投稿要求
(1) 投稿可选择网上投稿(www.hplpb.com.cn),投稿时文章题名前加“高能量密度物理”专辑;也可电子邮件投稿,邮件主题注明“高能量密度物理”专辑,投稿邮箱:liuyn862010@163.com。
(2) 论文体例格式请参照《强》刊网站投稿指南。
(3) 投稿时请附论文投稿保密审查证明(保密审查证明要求为纸质原件)。
(4) 未尽事宜请联系编辑部刘玉娜编辑或专辑主编。
03 重要日期
征稿截止日期:2020年5月15日
计划出版日期:2020年8月15日04 联系方式
责任编辑:
刘玉娜/《强激光与粒子束》编辑部
0816-2485753,liuyn862010@163.com。
专辑主编:
丁永坤/北京应用物理与计算数学研究所
ding-yk@vip.sina.com
05 专辑主编简介
丁永坤研究员,现任北京应用物理与计算数学研究所党委书记、北京大学应用物理与技术研究中心副主任、中国物理学会高能量密度物理专业委员会副主任、等离子体物理分会副主任。长期从事激光惯性约束核聚变(ICF)研究,在ICF实验、诊断和靶物理设计方面,曾负责过国家高技术和国家重大科技专项的重要课题,主持了国家自然基金重点项目和科技部重点研发计划“大科学装置前沿研究”重点专项等。曾获国家技术发明二等奖、国家科技进步二等奖和省部级科技进步奖,相关工作发表论文200余篇,出版专著一部。 -
[1] Smith R F, Lorenz K T, Ho D, et al. Graded-density reservoirs for accessing high stress low temperature material states[J]. Astrophysics and Space Science, 2006, 307: 269-272. [2] Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009, 102: 075503. doi: 10.1103/PhysRevLett.102.075503 [3] Wang J, Smith R F, Eggert J H, et al. Ramp compression of iron to 273 GPa[J]. J Appl Phys, 2013, 114: 023513. doi: 10.1063/1.4813091 [4] Eggert J H, Smith R F, Swift D C, et al. Ramp compression of tantalum to 330 GPa[J]. High Pressure Res, 2015, 35: 339-354. doi: 10.1080/08957959.2015.1071361 [5] Zhong J, Li Y, Wang X, et al. Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers[J]. Nature Physics, 2010, 6: 984-987. doi: 10.1038/nphys1790 [6] Dong Q L, Wang S J, Lu Q M, et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction[J]. Phys Rev Lett, 2012, 108: 215001. doi: 10.1103/PhysRevLett.108.215001 [7] Yaakobi B, Marshall F J, Boehly T R, et al. Extended X-ray absorption fine-structure experiments with a laser-imploded target as a radiation source[J]. Journal of the Optical Society of America B-Optical Physics, 2003, 20: 238-245. doi: 10.1364/JOSAB.20.000238 [8] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 2004, 92: 095504. [9] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11: 2688-2695. doi: 10.1063/1.1646673 [10] Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Physical Review Letters, 2005, 95: 075501. [11] Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12: 092703. [12] Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008, 15: 062703. [13] Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Phys Rev Lett, 2013, 111: 065501. doi: 10.1103/PhysRevLett.111.065501 [14] Coppari F, Thorn D B, Kemp G E, et al. X-ray source development for EXAFS measurements on the National Ignition Facility[J]. The Review of Scientific Instruments, 2017, 88: 083907. doi: 10.1063/1.4999649 [15] Xue Q X, Wang Z B, Jiang S E, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851 [16] Xue Q X, Wang Z B, Jiang S E, et al. Characteristic method for isentropic compression simulation[J]. Aip Adv, 2014, 4: 057127. doi: 10.1063/1.4880039 [17] Teo B K. EXAFS basic principles and data-analysis [M]. Berlin Heidelberg: Springer, 1986. [18] Sevillano E, Meuth H, Rehr J J. Extended X-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals[J]. Physical Review B, 1979, 20: 4908-4911. doi: 10.1103/PhysRevB.20.4908 [19] More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter[J]. Phys Fluids, 1988, 31: 3059-3078. doi: 10.1063/1.866963