留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线偏振相位涡旋光束的像散特性

龙凤琼 郑世杰 李玮 罗韵 王建军 冯国英

龙凤琼, 郑世杰, 李玮, 等. 线偏振相位涡旋光束的像散特性[J]. 强激光与粒子束, 2020, 32: 081005. doi: 10.11884/HPLPB202032.200025
引用本文: 龙凤琼, 郑世杰, 李玮, 等. 线偏振相位涡旋光束的像散特性[J]. 强激光与粒子束, 2020, 32: 081005. doi: 10.11884/HPLPB202032.200025
Long Fengqiong, Zheng Shijie, Li Wei, et al. Astigmatic characteristics of linearly polarized phase vortex beam[J]. High Power Laser and Particle Beams, 2020, 32: 081005. doi: 10.11884/HPLPB202032.200025
Citation: Long Fengqiong, Zheng Shijie, Li Wei, et al. Astigmatic characteristics of linearly polarized phase vortex beam[J]. High Power Laser and Particle Beams, 2020, 32: 081005. doi: 10.11884/HPLPB202032.200025

线偏振相位涡旋光束的像散特性

doi: 10.11884/HPLPB202032.200025
基金项目: 国家自然科学基金委-中国工程物理研究院联合基金项目(U1730141)
详细信息
    作者简介:

    龙凤琼(1995—),女,硕士,从事激光光束质量表征研究;1372632435@qq.com

    通讯作者:

    李 玮(1982—),女,副教授,从事激光光束质量、超连续谱激光研究;weili@scu.edu.cn

    冯国英(1969—),女,教授,从事激光微纳工程研究;guoing_feng@scu.edu.cn

  • 中图分类号: TN248

Astigmatic characteristics of linearly polarized phase vortex beam

  • 摘要: 提出采用像散系数表征涡旋光束的像散特性。利用螺旋相位板产生了线偏振相位涡旋光束,并对其光束质量及像散特性进行了实际测量。数值模拟了不同拓扑荷数的涡旋光束的传输特性及光束质量,分析了像散系数随拓扑荷数变化的规律,结果表明:当拓扑荷数为整数时,光束无像散,像散系数为零;当拓扑荷数为半奇数时,光束的像散特性明显,像散系数达到极大值;随着拓扑荷数整数部分的增加,像散系数的极大值减小。
  • 图  1  不同拓扑荷数的涡旋光束在不同传输位置的光斑图

    Figure  1.  Spot images of a vortex beam with different topological charges at different transmission locations

    图  2  具有不同拓扑荷数的涡旋光束光斑半径随传输距离变化的曲线

    Figure  2.  Spot radius of a vortex beam with different topological charges vs propagation distance

    图  3  涡旋光束的拓扑荷数取不同值时,光束质量参数随旋转角度的变化曲线

    Figure  3.  ${M^2}$ factor values of a vortex beam with different topological charges versus rotation angle

    图  4  光束质量参数随拓扑荷数变化的曲线

    Figure  4.  $M^2$ factor as a function of topological charge

    图  5  在不同传输位置处,CCD接收到的光斑图

    Figure  5.  Spot images detected by CCD at different transmission locations

    图  6  光束质量参数随旋转角度变化的曲线

    Figure  6.  ${M^2}$ factor values versus rotation angle

    图  7  像散系数随拓扑荷数变化的曲线

    Figure  7.  Astigmatic coefficient as a function of topological charge

  • [1] Soskin M S, Gorshkov V N, Vasnetsov M V, et al. Topological charge and angular momentum of light beams carrying optical vortices[J]. Physical Review A, 1997, 56(5): 4064-4975. doi: 10.1103/PhysRevA.56.4064
    [2] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [3] Jović Savić D, Piper A, Žikić R, et al. Vortex solitons at the interface separating square and hexagonal lattices[J]. Physics Letters A, 2015, 379(16/17): 1110-1113.
    [4] Gahagan K T, Swartzlander G A. Optical vortex trapping of particles[J]. Optics Letters, 1996, 21(11): 827-829. doi: 10.1364/OL.21.000827
    [5] Khonina S N, Kotlyar V V, Shinkaryev M V, et al. The phase rotor filter[J]. Journal of Modern Optics, 1992, 39(5): 1147-1154. doi: 10.1080/09500349214551151
    [6] Curtis J E, Grier D G. Modulated optical vortices[J]. Optics Letters, 2003, 28(11): 872-874. doi: 10.1364/OL.28.000872
    [7] Arlt J, Dholakia K, Allen L, et al. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms[J]. Journal of Modern Optics, 1998, 45(6): 1231-1237. doi: 10.1080/09500349808230913
    [8] Götte J B, O’Holleran K, Preece D, et al. Light beams with fractional orbital angular momentum and their vortex structure[J]. Optics Express, 2008, 16(2): 993. doi: 10.1364/OE.16.000993
    [9] Ndagano B, Sroor H, McLaren M, et al. Beam quality measure for vector beams[J]. Optics Letters, 2016, 41(2): 3407.
    [10] Szatkowski M M, Popiolek-Masajada A, Masajada J. Beam-quality measurement through off-axis optical vortex[C]//Proc of SPIE. 2019: 1110703.
    [11] Wen Jisen, Wang Ligang, Yang Xihua, et al. Vortex strength and beam propagation factor of fractional vortex beams[J]. Optics Express, 2019, 27(4): 5893. doi: 10.1364/OE.27.005893
    [12] Siegman A E. New developments in laser resonators[C]//Proc of SPIE. 1990, 1224: 2-14.
    [13] GB/T 32831-2016, 高能激光光束质量评价与测试方法[S].

    GB/T 32831-2016, Evaluation and test methods for beam quality of high energy laser[S]
    [14] 冯国英, 周寿桓. 激光束的强度矩描述[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan. Intensity moment of laser beam[M]. Beijing: National Defense Industry Press, 2016
    [15] 冯国英, 周寿桓, 高春清. 激光模场及光束质量表征[M]. 北京: 国防工业出版社, 2016.

    Feng Guoying, Zhou Shouhuan, Gao Chunqing. Laser mode field and beam quality characterization[M]. Beijing: National Defense Industry Press, 2016
    [16] 刘晓丽, 冯国英, 李玮, 等. 像散椭圆高斯光束的因子矩阵的理论与实验研究[J]. 物理学报, 2013, 62:194202. (Liu Xiaoli, Feng Guoying, Li Wei, et al. Theoretical and experimental study on M2 factor matrix for astigmatic elliptical Gaussian beam[J]. Aacta Physica Sinica, 2013, 62: 194202 doi: 10.7498/aps.62.194202
    [17] Ke Y, Zeng C, Xie P, et al. Measurement system with high accuracy for laser beam quality[J]. Applied Optics, 2015, 54(15): 4876-4880. doi: 10.1364/AO.54.004876
    [18] Weber H. Propagation of higher-order intensity moments in quadratic-index media[J]. Optical and Quantum Electronics, 1992, 24(9): S1027-S1049. doi: 10.1007/BF01588604
    [19] Siegman A E. How to (maybe) measure laser beam quality[J]. Optical Society of America Trends in Optics and Photonics Series, 1998, 17(2): l84-199.
    [20] 2018SR399207-2018, 光束质量M矩阵分析软件V1.0[S].

    2018SR399207-2018, Beam quality M matrix analysis software V1.0[S]
  • 加载中
图(7)
计量
  • 文章访问数:  1246
  • HTML全文浏览量:  353
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-07-15
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回