留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

45°高反膜中节瘤缺陷的电场增强效应及损伤特性

潘顺民 卫耀伟 安晨辉 罗振飞 王健

潘顺民, 卫耀伟, 安晨辉, 等. 45°高反膜中节瘤缺陷的电场增强效应及损伤特性[J]. 强激光与粒子束, 2020, 32: 071006. doi: 10.11884/HPLPB202032.200028
引用本文: 潘顺民, 卫耀伟, 安晨辉, 等. 45°高反膜中节瘤缺陷的电场增强效应及损伤特性[J]. 强激光与粒子束, 2020, 32: 071006. doi: 10.11884/HPLPB202032.200028
Pan Shunmin, Wei Yaowei, An Chenhui, et al. Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating[J]. High Power Laser and Particle Beams, 2020, 32: 071006. doi: 10.11884/HPLPB202032.200028
Citation: Pan Shunmin, Wei Yaowei, An Chenhui, et al. Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating[J]. High Power Laser and Particle Beams, 2020, 32: 071006. doi: 10.11884/HPLPB202032.200028

45°高反膜中节瘤缺陷的电场增强效应及损伤特性

doi: 10.11884/HPLPB202032.200028
基金项目: 国家自然科学基金项目(11974320)
详细信息
    作者简介:

    潘顺民(1990—),男,硕士,从事高功率激光薄膜元件阈值研究;1510359221@qq.com

    通讯作者:

    卫耀伟(1983—),男,副研究员,从事高功率激光薄膜研制;jimmy1363797@aliyun.com

  • 中图分类号: TN244

Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating

  • 摘要: 研究设计和制备了中心波长为1 064 nm的45°多层膜反射镜,通过数值仿真结合实验,对薄膜中节瘤缺陷引起的电场增强效应及其对薄膜抗激光损伤性能的影响进行了研究。结果表明:当1 064 nm激光从右至左45°斜入射时,电场增强效应主要出现在节瘤缺陷的表层及其左侧轮廓中部,电场增强效应随节瘤缺陷尺寸增大而增强。实验上,在清洁的基板表面喷布单分散SiO2微球作为人工节瘤种子,采用电子束蒸发制备法完成多层全反膜的制备,采用R-on-1方式对薄膜样品进行激光损伤测试。结果表明,薄膜的损伤阈值随着节瘤缺陷尺寸增加而减小。通过综合分析电场增强效应、薄膜损伤测试结果及损伤形貌特征得出,薄膜损伤阈值降低是由于节瘤缺陷和薄膜中微缺陷共同作用的结果。
  • 图  1  45°高反膜电场强度分布

    Figure  1.  Electric field intensity (EFI) distribution of 45° HR coating

    图  2  不同直径节瘤缺陷的s光和p光电场增强效应

    Figure  2.  Electric field enhancement effects of nodules with different diameters under s and p polarized light irradiation

    图  3  人工节瘤形貌(种子尺寸:2 μm)

    Figure  3.  Morphology of artificial nodule(seed diameter: 2 μm)

    图  4  样品的最小和最大激光损伤能量

    Figure  4.  The minimum and maximum laser damage energies of samples

    图  5  损伤斑形貌

    Figure  5.  Morphologyies of coating damage spots

    图  6  样品C损伤形貌

    Figure  6.  Damage morphology of sample C

    图  7  微缺陷喷溅损伤斑

    Figure  7.  Damage spot produced by micro defect ejection

    图  8  节瘤喷溅坑的表面和截面形貌图

    Figure  8.  Surface morphology and cross-section images of nodule pits

    表  1  不同区域的电场强度

    Table  1.   The electric field intensity in different regions

    seed diameter/μmelectric field intensity
    s-polarizedp-polarized
    region 1region 2region 3region 1region 2region 3
    0.5 3.78 4.59 6.37 5.14 3.06 4.06
    1 5.99 6.75 5.65 9.14 8.01 5.63
    2 10.43 10.69 7.38 23.55 16.07 5.00
    下载: 导出CSV

    表  2  样品参数

    Table  2.   Sample parameters

    sample numberseed diameter d/μmnodule diameter D/μmcoating thickness t/μmcoefficient c
    A0.53.5±0.2~6.753.62
    B14.8±0.23.41
    C27.0±0.23.63
    下载: 导出CSV
  • [1] Koldunov M F, Manenkov A A, Pocotilo I L. Theory of laser-induced damage to optical coatings: inclusion-initiated thermal explosion mechanism[C]//Proc of SPIE. 1994, 2114: 469-487.
    [2] Kozlowski M R, Chow R. The role of defects in laser damage of multilayer coatings[C]//Proc of SPIE. 1994, 2114: 640-649.
    [3] Dijon J, Kaiser N, Schallenberg U B, et al. Influence of substrate cleaning on LIDT of 355 nm HR coatings[C]//Proc of SPIE. 1997, 2966: 178-186.
    [4] Zhang Dawei, Shao Jianda, Fan Shuhai, et al. The effects of ion cleaning on the roughness of substrates and laser induced damage thresholds of films[C]//Optical Interference Coatings. 2004: 345-348
    [5] Bevis R P, Sheehan L M, Smith D J, et al. The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition[C]//Proc of SPIE. 1999, 3738: 318-324.
    [6] Chow R, Falabella S, Loomis G E, et al. Reactive evapoation of low defect density hafnia[J]. Applied Optics, 1993, 32(28): 5567-5574. doi: 10.1364/AO.32.005567
    [7] 谢凌云, 程鑫彬, 张锦龙, 等. 节瘤缺陷激光损伤的研究进展[J]. 强激光与粒子束, 2016, 28:090201. (Xie Lingyun, Cheng Xinbin, Zhang Jinlong, et al. Research process of laser-induced damage of nodular defects[J]. High Power Laser and Particle Beams, 2016, 28: 090201 doi: 10.11884/HPLPB201628.160058
    [8] Liu Xiaofeng, Zhao Yuan’an, et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 2010, 256(12): 3783-3788. doi: 10.1016/j.apsusc.2010.01.026
    [9] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proc of SPIE. 1999, 3578: 387-397.
    [10] Cheng Xinbin, Wei Zeyong, Zhang Jinlong, et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 2015, 23(7): 8609-8619. doi: 10.1364/OE.23.008609
    [11] Poulingue M, Dijon J, Rafin B, et al. Generation of defects with diamond and silica particles inside high-reflection coatings: influence on the laser damage threshold[C]//Proc of SPIE. 1999, 3738: 325-336.
    [12] Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22): 4290-4295. doi: 10.1364/AO.49.004290
    [13] Cheng Xinbin, Lequime M, Macleod H A, et al. Using monodisperse SiO2 microspheres to study laser-induced damage of nodules in HfO2/SiO2 high reflectors[C]//Proc of SPIE. 2011: 816816.
    [14] Deford J F, Kozlowski M R. Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings[C]//Proc of SPIE. 1993, 1848: 455-472.
    [15] Cheng Xinbin, Zhang Jinlong, Ding Tao, et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2013, 2(6): e80.
    [16] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans Antennas & Propagation, 1966, 14: 302-307.
    [17] Hue J, Garrec P, Dijon J, et al. R-on-1 automatic mapping: a new tool for laser damage testing[C]//Proc of SPIE. 1995, 2714: 90-101.
    [18] Han Jinghua, Li Yaguo, He Changtao, et al. Effects of laser plasma on damage in optical glass induced by pulsed lasers[J]. Optical Engineering, 2012, 51: 121809. doi: 10.1117/1.OE.51.12.121809
    [19] 周成虎, 张秋慧, 黄明明, 等. 杂质微粒对薄膜的损伤效应[J]. 红外与激光工程, 2016, 45:0721004. (Zhou Chenghu, Zhang Qiuhui, Huang Mingming, et al. Damage effects of impurity particles on film[J]. Infrared and Laser Engineering, 2016, 45: 0721004 doi: 10.3788/irla201645.0721004
    [20] Genin F Y, Stolz C J. Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings[C]//Proc of SPIE. 1996, 2870: 439-448.
    [21] Zhu Meiping, Yi Kui, Li Dawei, et al. Influence of SiO2 overcoat layer and electric field distribution on laser damage threshold and damage morphology of transport mirror coatings[J]. Optics Communications, 2014, 319: 75-79. doi: 10.1016/j.optcom.2014.01.014
    [22] Zhao Yuan’an, Gao Weidong, Shao Jianda, et al. Roles of absorbing defects and structural defects in multilayer under single-shot and multi-shot laser radiation[J]. Applied Surface Science, 2004, 227(1/4): 275-281.
    [23] Dijon J, Rafin B, Pelle C, et al. One-hundred Joule per square centimeter 1.06-μm mirrors[C]//Proc of SPIE. 2000, 3902: 158-168.
    [24] Cheng Xinbin, Shen Zhengxiang, Jiao Hongfei, et al. Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors[J]. Applied Optics, 2011, 50(9): 357-363. doi: 10.1364/AO.50.00C357
    [25] Liu Xiaofeng, Zhao Yuan’an, Gao Yanqi, et al. Investigations on the catastrophic damage in multilayer dielectric films[J]. Applied Optics, 2013, 52(10): 2194-2199. doi: 10.1364/AO.52.002194
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1779
  • HTML全文浏览量:  731
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-02
  • 修回日期:  2020-04-14
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回