留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单元素靶粒子位移损伤计算方法及有效模式分析

李欣 赵强 郝建红 董志伟 范杰清 张芳

李欣, 赵强, 郝建红, 等. 单元素靶粒子位移损伤计算方法及有效模式分析[J]. 强激光与粒子束, 2020, 32: 084007. doi: 10.11884/HPLPB202032.200051
引用本文: 李欣, 赵强, 郝建红, 等. 单元素靶粒子位移损伤计算方法及有效模式分析[J]. 强激光与粒子束, 2020, 32: 084007. doi: 10.11884/HPLPB202032.200051
Li Xin, Zhao Qiang, Hao Jianhong, et al. Calculation method and modes of radiation damage for single element target[J]. High Power Laser and Particle Beams, 2020, 32: 084007. doi: 10.11884/HPLPB202032.200051
Citation: Li Xin, Zhao Qiang, Hao Jianhong, et al. Calculation method and modes of radiation damage for single element target[J]. High Power Laser and Particle Beams, 2020, 32: 084007. doi: 10.11884/HPLPB202032.200051

单元素靶粒子位移损伤计算方法及有效模式分析

doi: 10.11884/HPLPB202032.200051
基金项目: 国家自然科学基金项目(U1730247,11571047,61372050)
详细信息
    作者简介:

    李 欣(1994—),女,硕士研究生,从事粒子束效应研究;lx118@ncepu.edu.cn

    通讯作者:

    赵 强(1975—),男,博士,副研究员,从事粒子束靶互作用物理机理及应用研究;zhaoq@iapcm.ac.cn

  • 中图分类号: O46

Calculation method and modes of radiation damage for single element target

  • 摘要: 通过SRIM程序的快速损伤计算与全级联计算两种常用模式,对单元素靶材料进行粒子辐照模拟计算,分别利用基于损伤能量间接计算移位数的NRT位移模型方法和直接通过输出文件读取的方法获得移位数,并对数据进行相应的处理及分析对比,结果表明:对于单元素靶来说,在SRIM快速损伤和全级联两种计算模式下,利用NRT位移模型数值计算得到的移位数基本一致,都可以用于进一步计算得到可靠的位移损伤剂量(dpa);而通过SRIM两种模式下的输出文件数据直接获得的移位数则有两倍左右的差异,要想得到相对可靠的dpa相关参数,需要根据不同辐照情况选取合适的计算模式。
  • 图  1  50 keV,500 keV和 5 MeV He辐照Si产生的空位分布

    Figure  1.  Distributions of vacancies for 50 keV,500 keV and 5 MeV He in Si

    表  1  50 keV粒子辐照时,由NRT模型计算得到的移位数$\nu $

    Table  1.   Number of vacancies calculated by the NRT model at 50 keV ion irradiation

    incident iontarget${T_{{\rm{dam}}}}$ /eV${\nu _{{\rm{NRT}}}}$ratio ${\nu _{{\rm{NRT(F - C)}}}}/{\nu _{{\rm{NRT(K - P)}}}}$
    K-PF-CK-PF-C
    protonSi6255507.16.30.88
    protonFe9559559.69.61.00
    FeSi32 66029 135373.3333.00.89
    FeFe35 16537 130351.7371.31.06
    AuSi33 49030 180382.7344.90.90
    AuFe35 80537 545358.1375.51.05
    下载: 导出CSV

    表  2  500 keV粒子辐照时,由NRT模型计算得到的移位数$\nu $

    Table  2.   Number of vacancies calculated by the NRT model at 500 keV ion irradiation

    incident iontarget${T_{{\rm{dam}}}}$/eV${\nu _{{\rm{NRT}}}}$ratio ${\nu _{{\rm{NRT(F - C)}}}}/{\nu _{{\rm{NRT(K - P)}}}}$
    K-PF-CK-PF-C
    protonSi1 1501 00013.111.40.87
    protonFe1 5501 55015.515.51.00
    FeSi212 850181 0002 432.62 068.60.85
    FeFe258 050281 4002 580.52 814.01.09
    AuSi258 400218 2502 953.12 494.30.84
    AuFe298 850326 3502 988.53 263.51.09
    下载: 导出CSV

    表  3  5 MeV粒子辐照时,由NRT模型计算得到的移位数$\nu $

    Table  3.   Number of vacancies calculated by the NRT model at 5 MeV ion irradiation

    incident iontarget${T_{{\rm{dam}}}}$/eV${\nu _{{\rm{NRT}}}}$ratio ${\nu _{{\rm{NRT(F - C)}}}}/{\nu _{{\rm{NRT(K - P)}}}}$
    K-PF-CK-PF-C
    protonSi3 5003 0004034.30.86
    protonFe4 0004 00040401.00
    FeSi578 000485 5006 605.75 548.60.84
    FeFe799 000890 0007 9908 9001.11
    AuSi1 388 000115 00015 862.912 7430.81
    AuFe1 836 0002 065 00018 36020 6501.12
    下载: 导出CSV

    表  4  50 keV粒子辐照时,由SRIM计算得到的移位数$\nu $

    Table  4.   Number of vacancies from output of SRIM for 50 keV ion irradiation

    incident iontargetnumber of vacancies from “vacancy.txt”ratio
    ${\nu _{{\rm{K - P}}}}$${\nu _{{\rm{F - C}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$
    protonSi3.65.31.470.500.84
    protonFe4.17.71.880.430.81
    FeSi368516.41.400.991.55
    FeFe347.8711.72.050.991.92
    AuSi377.9546.41.450.991.58
    AuFe355.1747.42.100.991.99
    下载: 导出CSV

    表  5  500 keV粒子辐照时,由SRIM计算得到的移位数$\nu $

    Table  5.   Number of vacancies from output of SRIM for 500 keV ion irradiation

    incident iontargetnumber of vacancies from “vacancy.txt”ratio
    ${\nu _{{\rm{K - P}}}}$${\nu _{{\rm{F - C}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$
    protonSi7.511.11.480.570.97
    protonFe7.714.91.940.500.96
    FeSi2 403.93 152.91.310.991.52
    FeFe2 559.55 230.22.040.991.86
    AuSi2 936.43 816.81.300.991.53
    AuFe2 978.76 101.82.051.001.87
    下载: 导出CSV

    表  6  5 MeV粒子辐照时,由SRIM计算得到的移位数$\nu $

    Table  6.   Number of vacancies from output of SRIM for 5 MeV ion irradiation

    incident iontargetnumber of vacancies from “vacancy.txt”ratio
    ${\nu _{{\rm{K - P}}}}$${\nu _{{\rm{F - C}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$
    protonSi21.932.11.470.550.94
    protonFe21.843.21.980.551.08
    FeSi6 464.65 548.61.290.981.50
    FeFe7 863.316 315.42.070.981.83
    AuSi15 771.319 429.11.230.991.52
    AuFe18 300.238 2722.091.001.85
    下载: 导出CSV

    表  7  He、Li粒子辐照Si,不同方法得到的移位数对比

    Table  7.   Number of vacancies from different tests for He、Li in Si

    incident ion and energy(keV)${\nu _{{\rm{NRT}}}}$from Eq.(2)number of displaced atoms from "vacancy.txt"ratio
    K-PF-C${\nu _{{\rm{K - P}}}}$${\nu _{{\rm{F - C}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{K - P}}}}$${\nu _{{\rm{K - P}}}}/{\nu _{{\rm{NRT}}}}$${\nu _{{\rm{F - C}}}}/{\nu _{{\rm{NRT}}}}$
    He,5058.955.145.669.41.520.771.26
    He,50085.779.46698.71.500.771.24
    He,5 000120.0114.391.7137.31.500.761.20
    Li,50109.0101.894.71411.490.871.38
    Li,500189.1174.9161.3236.71.470.851.35
    Li,5 000257.1234.3212.2305.71.440.831.30
    下载: 导出CSV
  • [1] Sang P Y. Evaluation of radiation damage induced by a proton beam at the KOMAC facility[J]. J Korean Phys Soc, 2015, 66(3): 439-442. doi: 10.3938/jkps.66.439
    [2] Ziegler J F, Biersack J P, Ziegler M D. SRIM—The stopping and range of ions in matter(2010)[J]. Nucl Instrum Methods Phys Res Sect B, 2010, 268(11/12): 1818-1823.
    [3] Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates[J]. Nucl Eng Des, 1975, 33(1): 50-54. doi: 10.1016/0029-5493(75)90035-7
    [4] Ziegler J F, Biersack J P, Littmark U. The stopping and range of ions in matter[M]. New York: Pergamon, 1985.
    [5] Stoller R E, Toloczko M B, Was G S, et al. On the use of SRIM for computing radiation damage exposure[J]. Nucl Instrum Methods Phys Res Sect B, 2013, 310: 75-80. doi: 10.1016/j.nimb.2013.05.008
    [6] Saha U, Devan K, Ganesan S. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013[J]. J Nucl Mater, 2018, 503: 30-41. doi: 10.1016/j.jnucmat.2018.02.039
    [7] Weber W J, Zhang Yanwen. Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations[J]. Curr Opin Solid State Mater Sci, 2019, 23(4): 1-11.
    [8] Seitz F. On the disordering of solids by action of fast massive particles[J]. Discuss Faraday Soc, 1949, 5: 271-282. doi: 10.1039/df9490500271
    [9] Kinchin G H, Pease R S. The displacement of atoms in solids by radiation[J]. Rep Prog Phys, 1955, 18(1): 1-51. doi: 10.1088/0034-4885/18/1/301
    [10] Lindhard J, Scharff M, Schiøtt H E. Range concepts and heavy ion ranges (notes on atomic collisions, II) [M].Denmark: I kommission hos Ejnar Munksgaard, 1963.
    [11] Etherington E W, Bramman J I, Nelson R S, et al. A UKAEA evaluation of displacement damage models for iron[J]. Nucl Eng Des, 1975, 33(1): 82-90. doi: 10.1016/0029-5493(75)90039-4
    [12] Robinson M T. Basic physics of radiation damage production[J]. J Nucl Mater, 1994, 216: 1-28. doi: 10.1016/0022-3115(94)90003-5
  • 加载中
图(1) / 表(7)
计量
  • 文章访问数:  2534
  • HTML全文浏览量:  526
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-29
  • 修回日期:  2020-05-06
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回