留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

220 GHz均匀永磁聚焦行波管电子光学系统的设计与实验研究

曾造金 胡芯瑞 蒋艺 胡鹏 马国武 马乔生

曾造金, 胡芯瑞, 蒋艺, 等. 220 GHz均匀永磁聚焦行波管电子光学系统的设计与实验研究[J]. 强激光与粒子束, 2020, 32: 083002. doi: 10.11884/HPLPB202032.200062
引用本文: 曾造金, 胡芯瑞, 蒋艺, 等. 220 GHz均匀永磁聚焦行波管电子光学系统的设计与实验研究[J]. 强激光与粒子束, 2020, 32: 083002. doi: 10.11884/HPLPB202032.200062
Zeng Zaojin, Hu Xinrui, Jiang Yi, et al. Uniform permanent magnetic focusing electron optical system for 220 GHz travelling wave tube[J]. High Power Laser and Particle Beams, 2020, 32: 083002. doi: 10.11884/HPLPB202032.200062
Citation: Zeng Zaojin, Hu Xinrui, Jiang Yi, et al. Uniform permanent magnetic focusing electron optical system for 220 GHz travelling wave tube[J]. High Power Laser and Particle Beams, 2020, 32: 083002. doi: 10.11884/HPLPB202032.200062

220 GHz均匀永磁聚焦行波管电子光学系统的设计与实验研究

doi: 10.11884/HPLPB202032.200062
详细信息
    作者简介:

    曾造金(1988—),男,硕士,从事毫米波与太赫兹电真空器件研究;zengzaojin@163.com

    通讯作者:

    马乔生(1973—),男,博士,从事毫米波与太赫兹电真空器件研究;mqshcaep@163.com

  • 中图分类号: TN124

Uniform permanent magnetic focusing electron optical system for 220 GHz travelling wave tube

  • 摘要: 电子光学系统是行波管的核心部件之一,在太赫兹频段,电子束通道很小,导致高电流密度电子束的传输非常困难。基于220 GHz折叠波导行波管慢波结构设计所需束流参数,根据理论分析和电磁仿真软件,设计了一款采用均匀永磁聚焦对电子束进行约束的电子光学系统。仿真结果显示,当电子束通道直径0.3 mm、长度31 mm时,在阴阳极压差20 kV的条件下阴极发射电流141 mA,电子流通率100%。根据设计结果封接了流通管,实验结果显示,当阴阳极压差20 kV时,阴极发射电流138.5 mA,收集极电流125.5 mA,电子流通率91%。
  • 图  1  皮尔斯电子枪示意图

    Figure  1.  Representative Pierce gun geometry showing different parameters

    图  2  皮尔斯电子枪结构

    Figure  2.  Schematic of electron gun geometry

    图  3  电子枪束流轨迹

    Figure  3.  Electron beam trajectory of electron gun without magnetic field

    图  4  注腰处电子分布

    Figure  4.  Beam cross section at beam waist

    图  5  均匀永磁聚焦系统结构

    Figure  5.  Section graph of magnetic system

    图  6  磁场约束下的电子轨迹

    Figure  6.  Simulated electron beam trajectory with magnetic field

    图  7  磁系统测试和仿真结果对比

    Figure  7.  Designed and measured axial magnetic field profile

    图  8  电子光学系统测试系统

    Figure  8.  Experiment layout

    图  9  电子光学系统测试结果

    Figure  9.  Measured data on oscilloscope

  • [1] Christian A W, Wolff V S, Ralf H, et al. Fast active THz cameras with ranging capabilities[J]. J Infrared Milli Terahz Waves, 2009, 30(12): 1281-1296.
    [2] Andriy A D, Thomas M G, Jerry W, et al. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter[J]. Op Express, 2010, 18(15): 16264-16272. doi: 10.1364/OE.18.016264
    [3] Roitman A, Hyttinen M, Horoyski P, et al. Development of sub-millimeter high power compact EIKs for DNP and radar applications[C]//IEEE International Vacuum Electronics Conference. 2017: 62-63.
    [4] Basten M A, Tucek J C, Gallagher D A, et al. 233 GHz high power amplifier development at Northrop Grumman[C]//IEEE International Vacuum Electronics Conference. 2016: 43-44.
    [5] Joye C D, Cook A M, Calame J P, et al. Demonstration of a high power, wideband 220-GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Trans Electron Devices, 2014, 61(6): 1672-1678. doi: 10.1109/TED.2014.2300014
    [6] Joye C D, Cook A M, Calame J P, et al. Microfabricated, high power millimeter wave amplifiers at G-band[C]//39st International Conference on Infrared, Millimeter, and Terahertz waves. 2014.
    [7] Armstrong C M, Kowalczyk R, Zubyk A, et al. A compact extremely high frequency MPM power amplifier[J]. IEEE Trans Electron Devices, 2018, 65(6): 2183-2188. doi: 10.1109/TED.2018.2808327
    [8] Lei W Q, Hu P, Huang Y H, et al. A G-band wideband CW folded waveguide TWT [C]//2019 IEEE International Vacuum Electronics Conference. 2018: 257-258.
    [9] 潘攀. 基于折叠波导结构亚毫米波结构与太赫兹行波管研制进展[C]//第四届全国太赫兹科学技术与应用学术交流会论文集. 2018.

    Pan Pan. Recent development for sub-millimeter and THz folded waveguide traveling wave tubes[C]///4th National THz Conference. 2018
    [10] 刘文鑫. G波段折叠波导行波管研制进展[C]//第四届全国太赫兹科学技术学术年会论文集. 2018.

    Liu Wenxin. Progress of G-band folded waveguide traveling wave tube[C]//4th National THz Conference. 2018
    [11] 杨赤如, 贾宝富, 朱兆君. 对皮尔斯电子枪综合法的改进[J]. 强激光与粒子束, 2006, 18(9):1544-1548. (Yang Chiru, Jia Baofu, Zhu Zhaojun. Improvement in the synthesis method of the Pierce electron gun[J]. High Power Laser and Particle Beams, 2006, 18(9): 1544-1548
    [12] 唐先锋, 段兆云, 王占亮, 等. 毫米波带状注电子枪的设计方法[J]. 红外与毫米波学报, 2014, 33(6):619-624. (Tang Xianfeng, Duan Zhaoyun, Wang Zhanliang, et al. The design method of millimeter-wave sheet-beam electron gun[J]. J Infrared Millim Waves, 2014, 33(6): 619-624
    [13] 杨作为. 行波管电子枪的优化[D]. 成都: 电子科技大学, 2009: 33-35.

    Yang Zuowei. Improvement of the Traveling Wave Tube Pierce electron gun[D]. Chengdu: University of Electronic Science and Technology of China, 2009: 33-35
    [14] 蔡金赤. 0.22 THz折叠波导返波管理论和实验研究[D]. 北京: 清华大学, 2015: 54-65.

    Cai Jinchi. Theoretical and experimental study on 0.22 THz folded waveguide backward wave oscillator[D]. Beijing: Tsinghua University, 2015: 54-65
  • 加载中
图(9)
计量
  • 文章访问数:  1420
  • HTML全文浏览量:  305
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 修回日期:  2020-07-15
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回