Application of image processing in dual-wavelength laser-induced damage growth of fused silica
-
摘要: 利用图像处理方法对比研究了单波长辐照和双波长激光同时辐照下熔石英光学元件的损伤增长阈值。通过实时采集损伤图像和靶面光斑能量空间分布,获取损伤增长发生位置对应的能量密度。针对
$3\omega $ 单独辐照、$3\omega $ 和$1\omega $ 同时辐照下熔石英元件损伤增长的实验数据,比较分析了基于图像处理方法和传统损伤增长阈值R-on-1测量方法(国标)所得结果的差异。结果表明:本文采用的图像处理方法在研究小口径非均匀光斑辐照下的熔石英光学元件损伤增长阈值时,能解决传统损伤阈值测试中将能量密度分布非均匀光斑等效为均匀分布的平顶光斑带来的计算误差问题,有助于降低损伤(增长)阈值测量中的光斑口径效应。-
关键词:
- 激光诱导损伤增长阈值 /
- 熔石英 /
- 双波长 /
- 小口径非均匀光斑 /
- 图像处理
Abstract: The damage growth threshold of fused silica optical elements under single-wavelength irradiation and dual-wavelength laser irradiation was studied based on image processing methods. Through real-time acquisition of the damage image and the spot spatial energy distribution, the energy density at the location where the damage growth occurs was obtained. Aiming at the experimental data of the damage growth of fused silica optical elements under$3\omega $ irradiation,$3\omega $ and$1\omega $ simultaneous irradiation, the differences between the results obtained by the image processing method and the traditional damage growth threshold R-on-1 measurement method (GB) were compared and analyzed. The results show that the image processing method used in this paper can solve the calculation error problems caused by the traditional method that the non-uniform spot with energy density distribution is equivalent to the flat top spot with uniform distribution when the damage of fused silica optical element increases under the non-uniform spot of small aperture irradiation, and reduce the effect of light spot caliber in damage (growth) threshold measurement. -
表 1
$3\omega $ 激光单独辐照下损伤增长阈值的测试实验Table 1. Testing experiments of damage growth threshold irradiated by
$3\omega $ lasersNo. amage growth threshold/(J/cm2) image processing traditional method 1 9.18 5.17 2 12.39 9.59 3 9.25 5.56 4 8.70 5.17 5 10.98 6.60 6 11.87 8.64 7 14.19 8.19 8 12.44 7.54 9 9.76 6.50 10 8.89 5.17 表 2
$3\omega $ 和$1\omega $ 同时辐照且平均能量密度比为5:1的损伤增长阈值Table 2. Damage growth thresholds under simultaneous irradiation of
$3\omega $ and$1\omega $ lasers with an average energy density ratio of 5:1No. damage growth treshold/(J/cm2) 3ω 1ω image processing traditional method image processing traditional method 1 6.51 4.79 2.07 0.93 2 8.76 4.73 2.44 0.96 3 8.79 4.82 2.47 0.95 4 7.44 4.76 2.10 0.95 5 10.58 7.93 4.03 1.58 6 11.65 6.44 2.87 1.27 7 10.90 7.87 3.85 1.58 8 12.26 7.84 3.00 1.58 9 11.35 6.44 3.17 1.27 10 9.88 6.28 3.30 1.28 表 3
$3\omega $ 和$1\omega $ 同时辐照且平均能量密度比为5:5的损伤增长阈值Table 3. Damage growth thresholds under simultaneous irradiation of
$3\omega $ and$1\omega $ lasers with an average energy density ratio of 5:5No. damage growth treshold(J/cm2) 3ω 1ω image processing traditional method image processing traditional method 1 8.17 4.76 12.99 4.91 2 5.82 4.00 10.28 4.11 3 7.40 4.00 10.55 4.11 4 9.10 4.92 12.42 5.06 5 12.02 6.19 14.42 6.28 6 10.01 6.34 14.56 6.28 7 10.42 6.15 15.14 6.37 8 8.64 4.79 13.17 4.94 9 7.98 4.79 10.69 4.94 10 11.74 6.34 15.70 6.40 -
[1] Norton M A, Carr A V, Carr C W, et al. Laser damage growth in fused silica with simultaneous 351 nm and 1053 nm irradiation[C]//International Society for Optics and Photonics Laser-Induced Damage in Optical Materials. 2008: 7132H. [2] 曹珍, 贺洪波, 胡国行, 等. 多脉冲激光诱导熔石英体损伤的时间分辨研究[J]. 中国激光, 2019, 46(8):133-138. (Cao Zhen, He Hongbo, Hu Guoxing, et al. Time-resolved study of multi-pulse laser induced fused silica damage[J]. Chinese Journal of Lasers, 2019, 46(8): 133-138 [3] Gao X, Yao K, Luo Y, et al. Investigation on laser damage probability of fused silica with simultaneous multi-wavelength irradiation[J]. Plasmonics, 2018, 13(2): 617-622. doi: 10.1007/s11468-017-0552-y [4] Zhang L, Ma B, Wang K, et al. Morphology and growth properties of nano- and submicrometer-scale initial damage sites under 355 nm wavelength pulsed laser irradiation[J]. Applied optics, 2018, 57(12): 3166-3171. doi: 10.1364/AO.57.003166 [5] 韩伟, 冯斌, 郑奎兴, 等. 高功率激光装置熔石英紫外损伤增长研究[J]. 物理学报, 2016, 65:246102. (Han Wei, Feng Bin, Zheng Kuixing, et al. Research on UV damage growth of fused silica in high power laser device[J]. Acta Physica Sinica, 2016, 65: 246102 doi: 10.7498/aps.65.246102 [6] 王洪祥, 沈璐, 李成福, 等. 光学元件激光诱导损伤分析及实验研究[J]. 中国激光, 2017, 44:0302006. (Wang Hongxiang, Shen Lu, Li Chengfu, et al. Analysis and experimental study of optical element induced damage[J]. Chinese Journal of Lasers, 2017, 44: 0302006 doi: 10.3788/CJL201744.0302006 [7] 邱荣, 蒋勇, 郭德成, 等. 多波长辐照下熔石英光学元件的损伤及损伤增长[J]. 强激光与粒子束, 2019, 31:082001. (Qiu Rong, Jiang Yong, Guo Decheng, et al. Damage and growth of fused silica optical elements under multi-wavelength irradiation[J]. High Power Laser and Particle Beams, 2019, 31: 082001 doi: 10.11884/HPLPB201931.190211 [8] Chambonneau M, Lamaignère L. Multi-wavelength growth of nanosecond laser-induced surface damage on fused silica gratings[J]. Scientific Reports, 2018, 8(1): 891. doi: 10.1038/s41598-017-18957-9 [9] Chen Y, Li S, Qu X, et al. Numerical investigation of growth model for laser-induced damage in optics under high power laser irradiation[J]. Optik, 2019, 194: 163053. doi: 10.1016/j.ijleo.2019.163053 [10] 李大伟, 赵元安, 贺洪波, 等. 光学元件激光损伤阈值的指数拟合法以及测试误差分析[J]. 中国激光, 2008, 35(2):273-275. (Li Dawei, Zhao Yuan’an, He Hongbo, et al. Exponential fitting method of laser damage threshold of optical elements and analysis of test error[J]. Chinese Journal of Lasers, 2008, 35(2): 273-275 doi: 10.3321/j.issn:0258-7025.2008.02.024 [11] GB/T16601.1~4-2017, 中华人民共和国国家标准, 激光器和激光相关设备激光损伤阈值测试方法[S]. 2017.GB/T16601.1~4-2017, National Standards of the People's Republic of China- Laser and laser-related equipment laser damage threshold test method[S]. 2017 [12] Liu Z, Zheng Y, Pan F, et al. Investigation of laser induced damage threshold measurement with single-shot on thin films[J]. Applied Surface Science, 2016, 382: 294-301. doi: 10.1016/j.apsusc.2016.04.093 [13] 单翀, 赵元安, 张喜和, 等. 基于高斯脉冲激光空间分辨测量光学元件表面激光损伤阈值研究[J]. 中国激光, 2018, 45:0104002. (Shan Chong, Zhao Yuanan, Zhang Xihe, et al. Study on the laser damage threshold of optical element surface based on Gaussian pulsed laser spatial resolution[J]. Chinese Journal of Lasers, 2018, 45: 0104002 doi: 10.3788/CJL201845.0104002 [14] Grigoryan A M, John A, Agaian S S. A novel color image enhancement method by the transformation of color images to 2-D grayscale images[J]. International Journal of Signal Processing and Analysis, 2017, 2: 002. [15] Zhu Rong, Zhu Li, Li Dongnan. Study of color heritage image enhancement algorithms based on histogram equalization[J]. Optik, 2015, 126(24): 5665-5667. doi: 10.1016/j.ijleo.2015.08.169 [16] 赵琦, 郝士琦, 张岱. 改进阈值分割的光斑中心定位方法[J]. 激光与红外, 2018, 48(5):633-637. (Zhao Qi, Hao Shiqi, Zhang Dai. Spot center location method based on improved threshold segmentation[J]. Laser & Infrared, 2018, 48(5): 633-637 doi: 10.3969/j.issn.1001-5078.2018.05.018 [17] 穆娟. 利用圆拟合进行激光光斑中心检测[J]. 舰船科学技术, 2016, 38(24):127-129. (Mu Juan. Laser spot center detection using circle fitting[J]. Ship Science and Technology, 2016, 38(24): 127-129