Research on several test issues of electromagnetic radiation susceptibility for electronic equipment
-
摘要: 针对部分电子设备通过国军标所规定的电磁兼容试验考核后,在实际训练、作战使用过程中仍存在电磁不兼容等现实问题,在对现行标准中的技术要求和测试方法进行系统分析的基础上,结合研究团队近几年在电子信息装备电磁环境效应研究方面的技术积累,探讨了测试过程中未寻找受试设备敏感接收方向、带内频点电磁辐射敏感度测试缺失以及多辐射源共同作用导致受试设备敏感度阈值显著降低等几个方面对电子信息装备电磁辐射敏感度测试结果的影响,在此基础上给出了解决上述相关问题的措施和建议,探讨了强场电磁辐射效应试验技术及电子设备复杂电磁环境适应性评估技术的发展趋势。Abstract: According to the practical problem that some electronic equipments still exist electromagnetic incompatibility phenomenon in training and fighting stage after passing the normal electromagnetic compatibility test required by National Military Standard of China, on the basis of systematically analyzing the technical requirements and test methods in the current military standard, considering the technology accumulation of our research team on the electronic information equipment electromagnetic environment effects in recent years, the influence the several conditions on the electronic information equipment electromagnetic radiation susceptibility test results were discussed. These conditions contain not searching the sensitive receiving direction of the equipment under test(EUT), lacking of electromagnetic radiation susceptibility test in in-band frequency, multi-source radiation causing remarkable reduction of the susceptibility threshold of the EUT and so on. On the basis of the discussion, the measures and suggestions which can solve the above related problems were given. The development tendency of the high intensity electromagnetic radiation effect test technology and the complex electromagnetic environment adaptability evaluation technology for electronic equipment were discussed.
-
表 1 均匀场辐照条件下机箱内部电路的最大接收功率
Table 1. The maximum receiving power of the inner case circuit under the condition of uniform field radiation
frequency/GHz the results of the 6 radiation directions
with 2 polarization pattern /dBmthe results of the 96 radiation
directions/dBmdeviation/dB 2.6 −36.47 −32.26 4.21 2.7 −38.41 −32.83 5.58 2.8 −31.47 −27.26 4.21 2.9 −29.45 −27.96 1.49 3.0 −36.59 −36.59 0.00 3.1 −43.22 −36.67 6.55 3.2 −37.89 −35.63 2.26 3.3 −42.87 −41.13 1.74 3.4 −39.52 −38.52 1.00 3.5 −39.63 −39.21 0.42 3.6 −41.42 −35.61 5.81 3.7 −30.42 −29.51 0.91 3.8 −39.18 −36.17 3.01 3.9 −41.35 −38.64 2.71 4.0 −46.15 −44.82 1.33 -
[1] 闫旭, 宋太亮, 邢彪, 等. 基于复杂网络的装备保障体系研究现状及展望[J]. 火力与指挥控制, 2018, 43(2):1-4, 11. (Yan Xu, Song Tailiang, Xing Biao, et al. Current status and prospect for equipment support system of systems based on complex network[J]. Fire Control & Command Control, 2018, 43(2): 1-4, 11 doi: 10.3969/j.issn.1002-0640.2018.02.001 [2] 孟范江. 电磁脉冲武器发展和应用[J]. 光机电信息, 2010, 27(9):81-84. (Meng Fanjiang. Development and application of electromagnetic pulse weapon[J]. OME Information, 2010, 27(9): 81-84 [3] 周广涛, 孙妍忞. 卫星导航信号高灵敏度接收技术研究[J]. 微型机与应用, 2016, 35(17):64-67, 71. (Zhou Guangtao, Sun Yanmin. Research on some techniques for high sensitivity satellite navigation receiver[J]. Microcomputer & Its Applications, 2016, 35(17): 64-67, 71 [4] 张宝珍, 张丽星, 尤晨宇. 国外武器装备电磁环境适应性试验与评价技术及能力发展综述[J]. 计算机测量与控制, 2015, 23(3):677-680, 684. (Zhang Baozhen, Zhang Lixing, You Chenyu. Overview of foreign weapon systems test and evaluation technology research and capability development under complex electromagnetic environment[J]. Computer Measurement & Control, 2015, 23(3): 677-680, 684 doi: 10.3969/j.issn.1671-4598.2015.03.001 [5] 刘尚合. 武器装备的电磁环境效应及其发展趋势[J]. 装备指挥技术学院学报, 2005, 16(1):1-6. (Liu Shanghe. Effect of electromagnetic environment to weaponry and its trend of development[J]. Journal of Institute of Command and Technology, 2005, 16(1): 1-6 [6] 张冬晓, 陈亚洲, 程二威, 等. 用于无人机信息链路电磁干扰预测的动态电磁敏感度测试研究[J]. 高电压技术, 2019, 45(2):665-672. (Zhang Dongxiao, Chen Yazhou, Cheng Erwei, et al. Research on dynamic electromagnetic susceptibility for electromagnetic interference prediction of UAV information link[J]. High Voltage Engineering, 2019, 45(2): 665-672 [7] 施群, 朱秋生, 余宏刚. 舰载有源干扰设备辐射噪声干扰信号带外杂散抑制技术研究[J]. 舰船电子工程, 2017, 37(8):85-87. (Shi Qun, Zhu Qiusheng, Yu Honggang. Outside shipboard active jamming equipment radiated[J]. Ship Electronic Engineering, 2017, 37(8): 85-87 doi: 10.3969/j.issn.1672-9730.2017.08.020 [8] GJB151B-2013. 军用设备和分系统电磁发射和敏感度要求与测量[S]. 2013.GJB151B-2013. Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems[S]. 2013 [9] 胡德洲. 基于混响室的装备临界辐射干扰场强测试技术研究[D]. 石家庄: 陆军工程大学, 2014.Hu Dezhou. Investigation of the critical radiated interference e-field strength testing technique for equipments in reverberation chambers[D]. Shijiazhuang: Army Engineering University, 2014 [10] Hu Dezhou, Wei Guanghui, Pan Xiaodong, et al. Investigation of the radiation immunity testing method in reverberation chambers[J]. IEEE Trans Electromagnetic Compatibility, 2017, 59(6): 1791-1797. doi: 10.1109/TEMC.2017.2698141 [11] 胡德洲, 魏光辉, 潘晓东, 等. 混响室与均匀场辐射敏感度测试相关性研究[J]. 高电压技术, 2018, 44(1):282-288. (Hu Dezhou, Wei Guanghui, Pan Xiaodong, et al. Investigation of correlations of the radiated susceptibility testing results between reverberation chamber and uniform fields[J]. High Voltage Engineering, 2018, 44(1): 282-288 [12] 刘莹, 毛煜茹, 谢拥军. 舰载相控阵天线杂散发射辐射的统计电磁学分析[J]. 微波学报, 2016, 32(2):11-14, 29. (Liu Ying, Mao Yuru, Xie Yongjun. Evaluation of spurious radiation level from shipboard phased array antenna using statistical eletromagnetics method[J]. Journal of Microwave, 2016, 32(2): 11-14, 29 [13] 潘晓东, 魏光辉, 卢新福, 等. 电磁注入等效替代辐照理论模型及实现技术[J]. 高电压技术, 2012, 38(9):2293-2301. (Pan Xiaodong, Wei Guanghui, Lu Xinfu, et al. Theoretical model and implementation technique of using injection as a substitute for radiation[J]. High Voltage Engineering, 2012, 38(9): 2293-2301 [14] 魏光辉, 潘晓东, 卢新福. 注入与辐照相结合的电磁辐射安全裕度试验方法[J]. 高电压技术, 2012, 38(9):2213-2220. (Wei Guanghui, Pan Xiaodong, Lu Xinfu, et al. Test method for electromagnetic radiation safety margin combined injection with radiation[J]. High Voltage Engineering, 2012, 38(9): 2213-2220 [15] Pan Xiaodong, Wei Guanghui, Lu Xinfu, et al. Research on wideband differential-mode current injection testing technique based on directional coupling device[J]. International Journal of Antennas and Propagation, 2014: 143068. [16] 魏光辉, 卢新福, 潘晓东. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术, 2016, 42(5):1347-1355. (Wei Guanghui, Lu Xinfu, Pan Xiaodong, et al. Recent progress and development in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering, 2016, 42(5): 1347-1355 [17] 李伟, 魏光辉, 潘晓东, 等. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11):2782-2789. (Li Wei, Wei Guanghui, Pan Xiaodong, et al. Interference prediction method of communication equipment under complex electromagnetic environment[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2782-2789 [18] Li Wei, Wei Guanghui, Pan Xiaodong, et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Trans Electromagnetic Compatibility, 2018, 60(2): 520-528. doi: 10.1109/TEMC.2017.2720961 [19] 李伟, 魏光辉, 王雅平, 等. 某型通信装备带内多频电磁环境生存能力预测[J]. 高电压技术, 2017, 43(8):2680-2688. (Li Wei, Wei Guanghui, Wang Yaping, et al. Survivability forecasting method for typical communication equipment under the in-band multi-frequency electromagnetic environment[J]. High Voltage Engineering, 2017, 43(8): 2680-2688