Laser-driven ion acceleration: development and potential applications
-
摘要: 激光离子加速是近年来激光等离子体领域兴起的研究热点之一。激光产生的高能离子束具有高亮度、小尺寸、脉宽窄和方向性好等特点,具有很多潜在的应用。概述了几种常见的激光离子加速物理机制,对一系列激光离子加速实验进展进行了归纳总结,最后介绍了几种激光驱动离子束的潜在应用。Abstract: Laser-driven ion acceleration is a frontier of laser plasma physics which has been developed in recent decades. Energetic ion beam generated in the interaction of laser and matter has unique properties such as high brilliance, compact size, ultra-short duration, and low emittance. These advantages are particularly suitable for many potential applications. This paper describes the main physical mechanism of ion acceleration driven by ultrashort laser. It reviews the progress of a series of laser-driven ion acceleration experiments. At last, it provides a brief introduction of several potential applications of laser-driven ion sources.
-
Key words:
- laser plasma /
- particle accelerator /
- ultra-short laser /
- ultra-intense laser
-
表 1 激光离子加速实验结果(2000—2019)
Table 1. Results of laser-driven ion acceleration experiments(2000—2019)
reference pulse energy
${ {{W} }_{\rm{L} } }/{\rm{J} }$irradiance ${I_0}$/
(W/cm2)contrast target incidence
angle/(°)proton/ion energy ${\varepsilon _{\rm{(p/i)}} }$/(MeV/nucleon) Snavely et al(2000) 423 3×1020 1×104 CH 100 μm 0 58 Krushelnick et al(2000) 50 5×1019 Al 125 μm 45 30 Nemoto et al(2001) 4 6×1018 5×105 Mylar 6 μm 45 10 Mackinnon et al(2002) 10 1×1020 Al 3 μm 22 24 Patel et al(2003) 10 5×1018 1×1010 Al 20 μm 0 12 Spencer et al(2003) 0.2 7×1018 Mylar 23 μm 0 1.5 Spencer et al(2003) 0.2 7×1018 1×106 Al 12 μm 0 0.9 McKenna et al(2004) 233 2×1020 1×106 Fe 100 μm 45 40 Kaluza et al(2004) 0.85 1.3×1019 1×107 Al 20 μm 30 4 Oishi et al(2005) 0.12 6×1018 2×107 Cu 5 μm 45 1.3 Fuchs et al(2006) 10 6×1019 1×105 Al 20 μm 0,40 20 Neely et al(2006) 0.3 1×1019 1×107 Al 0.1 μm 30 4 Willingale et al(2006) 340 6×1020 1×1010 He jet 2000 μm 10 Ceccotti et al(2007) 0.65 5×1018 1×105 Mylar 0.1 μm 45 5.25 Robson et al(2007) 310 6×1020 1×1010 Al 10 μm 45 55 Robson et al(2007) 160 3.2×1020 1×107 Al 10 μm 45 38 Robson et al(2007) 30 6×1019 1×107 Al 10 μm 45 16 Antici et al(2007) 1 1×1018 1×107 Si3N4 0.03 μm 0 7.3 Yogo et al(2007) 0.71 8×1018 1×1011 Cu 5 μm 45 1.4 Yogo et al(2008) 0.8 1.5×1019 1×106 polyimide 7.5 μm 45 3.8 Nishiuchi et al(2008) 1.7 3×1019 2.5×105 polyimide 7.5 μm 45 4 Flippo et al(2008) 20 1.1×1019 2.5×107 flat-top cone Al 10 μm 0 30 Safronov et al(2008) 6.5 1×1019 1×106 Al 2 μm 0 8 Henig et all(2009) 0.7 5×1019 DLC 5.4 0 13 Fukuda et al(2009) 0.15 7×1017 1×1011 CO2+He jet 2 mm 10 Zeil et al(2010) 3 1×1021 1×106 Ti 2 μm 45 17 Haberberger et al(2012) 60 6.5×1016 2×108 hydrogen gas jets 3 μm 20 Margarone et al(2012) 2 5×1019 nanosphere 535 nm 8.6 S. Kar et al(2012) 200 3×1020 Cu 100 nm 0 7(RPA,peak) Hegelich et al(2013) 90 2×1020 1×109 DLC 58 nm 0 37.8(BOA) H.Zhang et al(2015) 8.4 3.5×1019 1×1011 DLC 30 nm 30 4.7(shock) J. H. Bin et al(2015) 5 2×1020 1×1011 CNF 5+DLC(nm) 0 15(RPA,peak) Powell et al(2015) 200 2×1020 1×109 AI 40 nm 0,30 40 Nishiuchi et al(2015) 8 1×1021 AI 0.8 μm Fe 0.9 Gev Brabetz et al(2015) 70 Hollow laser 12 μm 0 27.6 Wagner et al(2015) 190 8×1020 1×107 polymer 750 nm 10 38(TNSA)&61(BOA) Margarone et al(2015) 30 7×1020 nanosphere 720 nm 9 30 Wagner et al(2016) 200 2.6×1020 3×1011 plastic 900 nm 0-30 85(TNSA) Passoni et al(2016) 7.4 4.5×1020 C foams 8 μm+AI 0.75 μm 30 30 Kim et al(2016) 8.5 6.1×1020 polymer 15 nm 2.5 93(RPA,no peak) H Zhang et al(2017) 13 6.9×1019 3×1011 plastic foil 40 nm 26 9(shock) Higginson et al(2018) 210±40 3±2×1020 1×1011 plastic foil 80 nm 30 ~100 W. J. Ma et al(2019) 9.2 5.5×1020 3×1011 CNF(${\rm{{\text{μ}} m} }$)+DLC 20 nm 2.4 C 50 -
[1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0 [2] Hargrove L, Fork R L, Pollack M. Locking of He–Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 1964, 5(1): 4-5. doi: 10.1063/1.1754025 [3] DiDomenico Jr M. Small-signal analysis of internal (coupling-type) modulation of lasers[J]. Journal of Applied Physics, 1964, 35(10): 2870-2876. doi: 10.1063/1.1713121 [4] Forslund D, Brackbill J. Magnetic-field-induced surface transport on laser-irradiated foils[J]. Physical Review Letters, 1982, 48(23): 1614. doi: 10.1103/PhysRevLett.48.1614 [5] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8 [6] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: 1-54. [7] Veksler V I. Coherent principle of acceleration of charged particles[C]//Proceedings of CERN Symposium on High Energy Accelerators and Pion Physics. 1956:81-83. [8] Mourou G, Mironov S, Khazanov E, et al. Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics[J]. The European Physical Journal Special Topics, 2014, 223(6): 1181-1188. doi: 10.1140/epjst/e2014-02171-5 [9] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261. doi: 10.1038/nphoton.2013.75 [10] Wilks S, Kruer W, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9): 1383-1386. doi: 10.1103/PhysRevLett.69.1383 [11] Wilks S C, Kruer W L. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas[J]. IEEE Journal of Quantum Electronics, 1997, 33(11): 1954-1968. doi: 10.1109/3.641310 [12] Davies J R. Laser absorption by overdense plasmas in the relativistic regime[J]. Plasma Physics and Controlled Fusion, 2008, 51: 014006. [13] Kruer W. The physics of laser plasma interactions [M]. CRC Press. 2019. [14] Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52 [15] Kruer W. Estabrook K J× B heating by very intense laser light[J]. The Physics of Fluids, 1985, 28(1): 430-432. doi: 10.1063/1.865171 [16] Wilks S, Langdon A, Cowan T, et al. Energetic proton generation in ultra-intense laser–solid interactions[J]. Physics of Plasmas, 2001, 8(2): 542-549. doi: 10.1063/1.1333697 [17] Hatchett S P, Brown C G, Cowan T E, et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets[J]. Physics of Plasmas, 2000, 7(5): 2076-2082. doi: 10.1063/1.874030 [18] Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Physical Review Letters, 2001, 86(16): 3562-3565. doi: 10.1103/PhysRevLett.86.3562 [19] Mora P. Plasma expansion into a vacuum[J]. Physical Review Letters, 2003, 90: 185002. doi: 10.1103/PhysRevLett.90.185002 [20] Mora P. Thin-foil expansion into a vacuum[J]. Physical Review E, 2005, 72: 056401. [21] Passoni M, Lontano M. Theory of light-ion acceleration driven by a strong charge separation[J]. Physical Review Letters, 2008, 101: 115001. doi: 10.1103/PhysRevLett.101.115001 [22] Tikhonchuk V, Andreev A, Bochkarev S, et al. Ion acceleration in short-laser-pulse interaction with solid foils[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B869. doi: 10.1088/0741-3335/47/12B/S69 [23] Malka G, Miquel J. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Physical Review Letters, 1996, 77(1): 75-78. doi: 10.1103/PhysRevLett.77.75 [24] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics, 2012, 75: 056401. doi: 10.1088/0034-4885/75/5/056401 [25] Esirkepov T, Borghesi M, Bulanov S, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92: 175003. doi: 10.1103/PhysRevLett.92.175003 [26] Chen M, Pukhov A, Yu T, et al. Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse[J]. Physical Review Letters, 2009, 103: 024801. doi: 10.1103/PhysRevLett.103.024801 [27] Macchi A, Cattani F, Liseykina T V, et al. Laser acceleration of ion bunches at the front surface of overdense plasmas[J]. Physical Review Letters, 2005, 94: 165003. doi: 10.1103/PhysRevLett.94.165003 [28] Robinson A, Zepf M, Kar S, et al. Radiation pressure acceleration of thin foils with circularly polarized laser pulses[J]. New Journal of Physics, 2008, 10: 013021. doi: 10.1088/1367-2630/10/1/013021 [29] Qiao B, Zepf M, Borghesi M, et al. Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses[J]. Physical Review Letters, 2009, 102: 145002. doi: 10.1103/PhysRevLett.102.145002 [30] Zhang X M, Shen B F, Li X M, et al. Multistaged acceleration of ions by circularly polarized laser pulse: Monoenergetic ion beam generation[J]. Physics of Plasmas, 2007, 14: 073101. [31] Zhuo H B, Chen Z L, Yu W, et al. Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser[J]. Physical Review Letters, 2010, 105: 065003. [32] Yu T P, Pukhov A, Shvets G, et al. Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil[J]. Physics of Plasmas, 2011, 18: 043110. [33] Yan X, Lin C, Sheng ZM, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 2008, 100: 135003. doi: 10.1103/PhysRevLett.100.135003 [34] Pegoraro F, Bulanov S V. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse[J]. Physical Review Letters, 2007, 99: 065002. [35] Yin Y, Yu W, Yu M, et al. Influence of target thickness on the generation of high-density ion bunches by ultrashort circularly polarized laser pulses[J]. Physics of Plasmas, 2008, 15: 093106. doi: 10.1063/1.2977485 [36] Palmer C, Schreiber J, Nagel S, et al. Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser[J]. Physical Review Letters, 2012, 108: 225002. doi: 10.1103/PhysRevLett.108.225002 [37] Henig A, Steinke S, Schnürer M, et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2009, 103: 245003. doi: 10.1103/PhysRevLett.103.245003 [38] Bin J, Ma W, Wang H, et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 2015, 115(6): 064801. doi: 10.1103/PhysRevLett.115.064801 [39] Gamaly E. Instability of the overdense plasma boundary induced by the action of a powerful photon beam[J]. Physical Review E, 1993, 48(4): 2924-2928. doi: 10.1103/PhysRevE.48.2924 [40] Sgattoni A, Sinigardi S, Fedeli L, et al. Laser-driven Rayleigh-Taylor instability: plasmonic effects and three-dimensional structures[J]. Physical Review E, 2015, 91: 013106. doi: 10.1103/PhysRevE.91.013106 [41] Eliasson B. Instability of a thin conducting foil accelerated by a finite wavelength intense laser[J]. New Journal of Physics, 2015, 17: 033026. doi: 10.1088/1367-2630/17/3/033026 [42] Zhang X, Shen B, Ji L, et al. Instabilities in interaction of circularly polarized laser pulse and overdense target[J]. Physics of Plasmas, 2011, 18: 073101. doi: 10.1063/1.3603821 [43] Yan X, Chen M, Sheng Z, et al. Self-induced magnetic focusing of proton beams by Weibel-like instability in the laser foil-plasma interactions[J]. Physics of Plasmas, 2009, 16: 044501. doi: 10.1063/1.3104703 [44] Wan Y, Pai CH, Zhang C, et al. Physical mechanism of the transverse instability in radiation pressure ion acceleration[J]. Physical Review Letters, 2016, 117: 234801. doi: 10.1103/PhysRevLett.117.234801 [45] Chen M, Kumar N, Pukhov A, et al. Stabilized radiation pressure dominated ion acceleration from surface modulated thin-foil targets[J]. Physics of Plasmas, 2011, 18: 073106. doi: 10.1063/1.3606562 [46] Yu T P, Pukhov A, Shvets G, et al. Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil[J]. Physical Review Letters, 2010, 105: 065002. doi: 10.1103/PhysRevLett.105.065002 [47] Shen X, Qiao B, Zhang H, et al. Achieving stable radiation pressure acceleration of heavy ions via successive electron replenishment from ionization of a high-Z material coating[J]. Physical Review Letters, 2017, 118: 204802. doi: 10.1103/PhysRevLett.118.204802 [48] Qiao B, Zepf M, Borghesi M, et al. Radiation-pressure acceleration of ion beams from nanofoil targets: The leaky light-sail regime[J]. Physical Review Letters, 2010, 105: 155002. doi: 10.1103/PhysRevLett.105.155002 [49] Wu D, Zheng C, Qiao B, et al. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses[J]. Physical Review E, 2014, 90: 023101. doi: 10.1103/PhysRevE.90.023101 [50] Zhou M, Yan X, Mourou G, et al. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime[J]. Physics of Plasmas, 2016, 23: 043112. doi: 10.1063/1.4947544 [51] Yu T P, Chen M, Pukhov A. High quality GeV proton beams from a density-modulated foil target[J]. Laser and Particle Beams, 2009, 27(4): 611-617. doi: 10.1017/S0263034609990334 [52] Hong X R, Xie B S, Zhang S, et al. High quality ion acceleration from a double-layer target dominated by the radiation pressure of a transversely Gaussian laser pulse[J]. Physics of Plasmas, 2010, 17: 103107. doi: 10.1063/1.3503604 [53] Chen M, Pukhov A, Sheng Z, et al. Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets[J]. Physics of Plasmas, 2008, 15: 113103. doi: 10.1063/1.3019105 [54] Silva L O, Marti M, Davies J R, et al. Proton shock acceleration in laser-plasma interactions[J]. Physical Review Letters, 2004, 92: 015002. doi: 10.1103/PhysRevLett.92.015002 [55] Forslund D, Shonk C. Formation and structure of electrostatic collisionless shocks[J]. Physical Review Letters, 1970, 25(25): 1699-1702. doi: 10.1103/PhysRevLett.25.1699 [56] Ji L L, Shen B F, Zhang X M, et al. Generating monoenergetic heavy-ion bunches with laser-induced electrostatic shocks[J]. Physical Review Letters, 2008, 101: 164802. [57] Fiuza F, Stockem A, Boella E, et al. Laser-driven shock acceleration of monoenergetic ion beams[J]. Physical Review Letters, 2012, 109: 215001. [58] Matsui R, Fukuda Y, Kishimoto Y. Quasimonoenergetic proton bunch acceleration driven by hemispherically converging collisionless shock in a hydrogen cluster coupled with relativistically induced transparency[J]. Physical Review Letters, 2019, 122: 014804. [59] Haberberger D, Tochitsky S, Fiuza F, et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams[J]. Nature Physics, 2012, 8(1): 95-99. doi: 10.1038/nphys2130 [60] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751 [61] Zhang H, Shen B, Wang W, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2017, 119: 164801. doi: 10.1103/PhysRevLett.119.164801 [62] Yin L, Albright B, Hegelich B, et al. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets[J]. Physics of plasmas, 2007, 14: 056706. doi: 10.1063/1.2436857 [63] Yin L, Albright B, Bowers K, et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets[J]. Physical Review Letters, 2011, 107: 045003. doi: 10.1103/PhysRevLett.107.045003 [64] Qiao B, Shen X, He H, et al. Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses[J]. Plasma Physics and Controlled Fusion, 2018, 61: 014039. [65] Esirkepov T Z, Bulanov S, Nishihara K, et al. Proposed double-layer target for the generation of high-quality laser-accelerated ion beams[J]. Physical Review Letters, 2002, 89: 175003. doi: 10.1103/PhysRevLett.89.175003 [66] Fourkal E, Velchev I, Ma CM. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers[J]. Physical Review E, 2005, 71: 036412. doi: 10.1103/PhysRevE.71.036412 [67] Ditmire T, Tisch J, Springate E, et al. High-energy ions produced in explosions of superheated atomic clusters[J]. Nature, 1997, 386(6620): 54-56. doi: 10.1038/386054a0 [68] Nishihara K, Amitani H, Murakami M, et al. High energy ions generated by laser driven Coulomb explosion of cluster[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 464(13): 98-102. [69] Shen X F, Qiao B, Zhang H, et al. Electrostatic capacitance-type acceleration of ions with an intense few-cycle laser pulse[J]. Applied Physics Letters, 2019, 114: 144102. [70] Mackinnon A J, Borghesi M, Hatchett S, et al. Effect of plasma scale length on multi-MeV proton production by intense laser pulses[J]. Physical Review Letters, 2001, 86(9): 1769-1772. doi: 10.1103/PhysRevLett.86.1769 [71] Allen M, Patel P K, Mackinnon A, et al. Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils[J]. Physical Review Letters, 2004, 93: 265004. [72] Fuchs J, Sentoku Y, Karsch S, et al. Comparison of laser ion acceleration from the front and rear surfaces of thin foils[J]. Physical Review Letters, 2005, 94: 045004. [73] Schwoerer H, Pfotenhauer S, Jackel O, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448. doi: 10.1038/nature04492 [74] Hegelich B M, Albright B J, Cobble J, et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444. doi: 10.1038/nature04400 [75] Margarone D, Klimo O, Kim I J, et al. Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils[J]. Physical Review Letters, 2012, 109: 2348011. [76] Margarone D, Kim I J, Psikal J, et al. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18: 071304. [77] Wagner F, Deppert O, Brabetz C, et al. Maximum proton energy above 85 mev from the relativistic interaction of laser pulses with micrometer thick CH<sub>2</sub> targets[J]. Physical Review Letters, 2016, 116: 205002. [78] Steinke S, Henig A, Schnurer M, et al. Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets[J]. Laser and Particle Beams, 2010, 28(1): 215-221. doi: 10.1017/S0263034610000157 [79] Henig A, Kiefer D, Markey K, et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime[J]. Physical Review Letters, 2009, 103: 045002. [80] Kar S, Kakolee K F, Qiao B, et al. Ion acceleration in multispecies targets driven by intense laser radiation pressure[J]. Physical Review Letters, 2012, 109: 185006. [81] Steinke S, Hilz P, Schnurer M, et al. Stable laser-ion acceleration in the light sail regime[J]. Physical Review Special Topics–Accelerators and Beams, 2013, 16: 011303. [82] Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens[J]. Physical Review Letters, 2011, 107: 265002. [83] Kim I J, Pae K H, Choi I W, et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J]. Physics of Plasmas, 2016, 23: 070701. [84] Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724. [85] Ma W J, Kim I J, Yu J Q, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 2019, 122: 014803. [86] Zhu J G, Zhu K, Tao L, et al. Distribution uniformity of laser-accelerated proton beams[J]. Chinese Physics C, 2017, 41(9): 146-154. [87] Zhu J G, Wu M J, Liao Q, et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 2019, 22: 061302. [88] Borghesi M, Campbell D H, Schiavi A, et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique[J]. Physics of Plasmas, 2002, 9(5): 2214-2220. doi: 10.1063/1.1459457 [89] Mackinnon A J, Patel P K, Town R P, et al. Proton radiography as an electromagnetic field and density perturbation diagnostic[J]. Review of Scientific Instruments, 2004, 75(10): 3531-3536. doi: 10.1063/1.1788893 [90] Wang W, Cai H, Teng J, et al. Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target[J]. Physics of Plasmas, 2018, 25: 083111. doi: 10.1063/1.5000991 [91] Shan L, Cai H, Zhang W, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001 [92] Yang X Y, Xiao C J, Chen Y H, et al. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)[J]. Review of Scientific Instruments, 2016, 87: 11D608. [93] Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436 [94] Key M H. Status of and prospects for the fast ignition inertial fusion concept[J]. Physics of Plasmas, 2007, 14: 055502. [95] Faenov A Y, Pikuz T A, Fukuda Y, et al. Ionography of nanostructures with the use of a laser plasma of cluster targets[J]. JETP Letters, 2009, 89(10): 485-491. doi: 10.1134/S0021364009100038 [96] Faenov A Y, Pikuz T A, Fukuda Y, et al. Submicron ionography of nanostructures using a femtosecond-laser-driven-cluster-based source[J]. Applied Physics Letters, 2009, 95: 101107. [97] Kellnberger S, Assmann W, Lehrack S, et al. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging[J]. Scientific Reports, 2016, 6: 2P305. [98] Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. [99] Mancic A, Levy A, Harmand M, et al. Picosecond short-range disordering in isochorically heated Aluminum at solid density[J]. Physical Review Letters, 2010, 104: 035002. [100] Pelka A, Gregori G, Gericke D O, et al. Ultrafast melting of carbon induced by intense proton beams[J]. Physical Review Letters, 2010, 105: 265701. [101] Bulanov S S, Brantov A, Bychenkov V Y, et al. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses[J]. Medical Physics, 2008, 35(5): 1770-1776. doi: 10.1118/1.2900112 [102] Malka V, Fritzler S, Lefebvre E, et al. Practicability of protontherapy using compact laser systems[J]. Medical Physics, 2004, 31(6): 1587-1592. doi: 10.1118/1.1747751 [103] Loeffler J S, Durante M. Charged particle therapy-optimization, challenges and future directions[J]. Nature Reviews Clinical Oncology, 2013, 10(7): 411-424. doi: 10.1038/nrclinonc.2013.79 [104] Krushelnick K, Clark E L, Allott R, et al. Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source[J]. IEEE Transactions on Plasma Science, 2000, 28(4): 1184-1189. [105] Antici P, Fazi M, Lombardi A, et al. Numerical study of a linear accelerator using laser-generated proton beams as a source[J]. Journal of Applied Physics, 2008, 104: 124901. [106] Antici P, Migliorati M, Mostacci A, et al. A compact post-acceleration scheme for laser-generated protons[J]. Physics of Plasmas, 2011, 18: 073103. [107] Wang W, Shen B, Zhang H, et al. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system[J]. AIP Advances, 2015, 5: 107214. doi: 10.1063/1.4934485 [108] Teng J, Gu Y, Chen J, et al. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 826: 15-20. [109] Teng J, Zhao Z, Zhu B, et al. Time-resolved radiography using chirp-pulse proton beams[J]. Chinese Physics Letters, 2011, 28: 035203. doi: 10.1088/0256-307X/28/3/035203 [110] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high-gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664 [111] Fernandez J C, Honrubia J J, Albright B J, et al. Progress and prospects of ion-driven fast ignition[J]. Nuclear Fusion, 2009, 49: 065004. [112] Fiorini F, Kirby D, Borghesi M, et al. Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams[J]. Physics in Medicine and Biology, 2011, 56(21): 6969-6982. doi: 10.1088/0031-9155/56/21/013 [113] Richter C, Karsch L, Dammene Y, et al. A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons[J]. Physics in Medicine and Biology, 2011, 56(6): 1529-1543. doi: 10.1088/0031-9155/56/6/002 [114] Boustani J, Grapin M, Laurent P A, et al. The 6th R of radiobiology: reactivation of anti-tumor immune response[J]. Cancers, 2019, 11(6): 860. doi: 10.3390/cancers11060860 [115] Mole R. Whole body irradiation—radiobiology or medicine?[J]. The British Journal of Radiology, 1953, 26(305): 234-241. doi: 10.1259/0007-1285-26-305-234 [116] McLaughlin M, Patin E C, Pedersen M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy[J]. Nature Reviews Cancer, 2020: 1-15. [117] Goto T. Radiation as an in situ auto-vaccination: Current perspectives and challenges[J]. Vaccines, 2019, 7(3): 100. doi: 10.3390/vaccines7030100