留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光离子加速研究与应用展望

吴学志 寿寅任 弓正 赵研英 朱昆 杨根 卢海洋 林晨 马文君 陈佳洱 颜学庆

吴学志, 寿寅任, 弓正, 等. 激光离子加速研究与应用展望[J]. 强激光与粒子束, 2020, 32: 092002. doi: 10.11884/HPLPB202032.200090
引用本文: 吴学志, 寿寅任, 弓正, 等. 激光离子加速研究与应用展望[J]. 强激光与粒子束, 2020, 32: 092002. doi: 10.11884/HPLPB202032.200090
Wu Xuezhi, Shou Yinren, Gong Zheng, et al. Laser-driven ion acceleration: development and potential applications[J]. High Power Laser and Particle Beams, 2020, 32: 092002. doi: 10.11884/HPLPB202032.200090
Citation: Wu Xuezhi, Shou Yinren, Gong Zheng, et al. Laser-driven ion acceleration: development and potential applications[J]. High Power Laser and Particle Beams, 2020, 32: 092002. doi: 10.11884/HPLPB202032.200090

激光离子加速研究与应用展望

doi: 10.11884/HPLPB202032.200090
基金项目: 国家重点研发计划项目(2019YFF01014402);国家自然科学基金项目(11921006)
详细信息
    作者简介:

    吴学志(1997—),男,博士研究生,从事激光离子加速的理论研究;xuezhi_wu@pku.edu.cn

    通讯作者:

    颜学庆(1977—),男,博士,教授,从事激光离子加速的理论、实验和应用研究;x.yan@pku.edu.cn

  • 中图分类号: O434.12

Laser-driven ion acceleration: development and potential applications

  • 摘要: 激光离子加速是近年来激光等离子体领域兴起的研究热点之一。激光产生的高能离子束具有高亮度、小尺寸、脉宽窄和方向性好等特点,具有很多潜在的应用。概述了几种常见的激光离子加速物理机制,对一系列激光离子加速实验进展进行了归纳总结,最后介绍了几种激光驱动离子束的潜在应用。
  • 图  1  辐射光压加速过程[25]

    Figure  1.  Ion acceleration in the radiation pressure dominant(laser piston)regime,3D PIC simulation[25]

    图  2  离子密度($n$)和电子密度(${n_{{\rm{p}}0}}$)分布示意图, ${E_{x1}}$${E_{x2}}$为电子耗尽层和电子压缩层的纵向电场分布[33]

    Figure  2.  Schematic of the equilibrium density profiles for ions ($n$) and electrons (${n_{{\rm{p}}0}}$[33]

    图  3  质子在相空间($x$${p_x}$)中的“追赶”运动

    Figure  3.  Phase-space distribution of protons

    图  4  质子能谱

    Figure  4.  Energy spectrum of protons

    图  5  激波加速示意图

    Figure  5.  Schematic of shock acceleration

    图  6  基于高功率激光的激光离子加速器布局[88]

    Figure  6.  Layout of compact laser plasma accelerator based on a high-power laser[88]

    图  7  北京大学激光加速器质子能谱及不同能量的束流形状[88]

    Figure  7.  Scaling of the proton charge with different central energies on the irradiation platform[88]

    图  8  质子照相装置示意图[89]

    Figure  8.  Experimental setup for proton imaging[89]

    图  9  束线终端的蚂蚁质子照相局部放大图

    Figure  9.  Droton radiography images of ant.(a)ant,(b)head,(c)wing(d)belly

    图  10  激光离子束轨道探针(LITP)系统示意图

    Figure  10.  Schematic of laser-driven ion-beam trace probe (LITP) system

    图  11  激光驱动的电子快点火示意图

    Figure  11.  Schematic of laser-driven electron fast ignition

    图  12  质子快点火装置示意图[111]

    Figure  12.  Schematic of laser-driven proton fast ignition[111]

    图  13  激光质子加速器系统示意图

    Figure  13.  Schematic of laser-driven proton accelerator system

    表  1  激光离子加速实验结果(2000—2019)

    Table  1.   Results of laser-driven ion acceleration experiments(2000—2019)

    referencepulse energy
    ${ {{W} }_{\rm{L} } }/{\rm{J} }$
    irradiance ${I_0}$/
    (W/cm2
    contrasttargetincidence
    angle/(°)
    proton/ion energy ${\varepsilon _{\rm{(p/i)}} }$/(MeV/nucleon)
    Snavely et al(2000)4233×10201×104CH 100 μm058
    Krushelnick et al(2000)505×1019Al 125 μm4530
    Nemoto et al(2001)46×10185×105Mylar 6 μm4510
    Mackinnon et al(2002)101×1020Al 3 μm2224
    Patel et al(2003)105×10181×1010Al 20 μm012
    Spencer et al(2003)0.27×1018Mylar 23 μm01.5
    Spencer et al(2003)0.27×10181×106Al 12 μm00.9
    McKenna et al(2004)2332×10201×106Fe 100 μm4540
    Kaluza et al(2004)0.851.3×10191×107Al 20 μm304
    Oishi et al(2005)0.126×10182×107Cu 5 μm451.3
    Fuchs et al(2006)106×10191×105Al 20 μm0,4020
    Neely et al(2006)0.31×10191×107Al 0.1 μm304
    Willingale et al(2006)3406×10201×1010He jet 2000 μm10
    Ceccotti et al(2007)0.655×10181×105Mylar 0.1 μm455.25
    Robson et al(2007)3106×10201×1010Al 10 μm4555
    Robson et al(2007)1603.2×10201×107Al 10 μm4538
    Robson et al(2007)306×10191×107Al 10 μm4516
    Antici et al(2007)11×10181×107Si3N4 0.03 μm07.3
    Yogo et al(2007)0.718×10181×1011Cu 5 μm451.4
    Yogo et al(2008)0.81.5×10191×106polyimide 7.5 μm453.8
    Nishiuchi et al(2008)1.73×10192.5×105polyimide 7.5 μm454
    Flippo et al(2008)201.1×10192.5×107flat-top cone Al 10 μm030
    Safronov et al(2008)6.51×10191×106Al 2 μm08
    Henig et all(2009)0.75×1019DLC 5.4013
    Fukuda et al(2009)0.157×10171×1011CO2+He jet 2 mm10
    Zeil et al(2010)31×10211×106Ti 2 μm4517
    Haberberger et al(2012)606.5×10162×108hydrogen gas jets 3 μm20
    Margarone et al(2012)25×1019nanosphere 535 nm8.6
    S. Kar et al(2012)2003×1020Cu 100 nm07(RPA,peak)
    Hegelich et al(2013)902×10201×109DLC 58 nm037.8(BOA)
    H.Zhang et al(2015)8.43.5×10191×1011DLC 30 nm304.7(shock)
    J. H. Bin et al(2015)52×10201×1011CNF 5+DLC(nm)015(RPA,peak)
    Powell et al(2015)2002×10201×109AI 40 nm0,3040
    Nishiuchi et al(2015)81×1021AI 0.8 μmFe 0.9 Gev
    Brabetz et al(2015)70Hollow laser12 μm027.6
    Wagner et al(2015)1908×10201×107polymer 750 nm1038(TNSA)&61(BOA)
    Margarone et al(2015)307×1020nanosphere 720 nm930
    Wagner et al(2016)2002.6×10203×1011plastic 900 nm0-3085(TNSA)
    Passoni et al(2016)7.44.5×1020C foams 8 μm+AI 0.75 μm3030
    Kim et al(2016)8.56.1×1020polymer 15 nm2.593(RPA,no peak)
    H Zhang et al(2017)136.9×10193×1011plastic foil 40 nm269(shock)
    Higginson et al(2018)210±403±2×10201×1011plastic foil 80 nm30~100
    W. J. Ma et al(2019)9.25.5×10203×1011CNF(${\rm{{\text{μ}} m} }$)+DLC 20 nm2.4C 50
    下载: 导出CSV
  • [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. doi: 10.1038/187493a0
    [2] Hargrove L, Fork R L, Pollack M. Locking of He–Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 1964, 5(1): 4-5. doi: 10.1063/1.1754025
    [3] DiDomenico Jr M. Small-signal analysis of internal (coupling-type) modulation of lasers[J]. Journal of Applied Physics, 1964, 35(10): 2870-2876. doi: 10.1063/1.1713121
    [4] Forslund D, Brackbill J. Magnetic-field-induced surface transport on laser-irradiated foils[J]. Physical Review Letters, 1982, 48(23): 1614. doi: 10.1103/PhysRevLett.48.1614
    [5] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [6] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: 1-54.
    [7] Veksler V I. Coherent principle of acceleration of charged particles[C]//Proceedings of CERN Symposium on High Energy Accelerators and Pion Physics. 1956:81-83.
    [8] Mourou G, Mironov S, Khazanov E, et al. Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics[J]. The European Physical Journal Special Topics, 2014, 223(6): 1181-1188. doi: 10.1140/epjst/e2014-02171-5
    [9] Mourou G, Brocklesby B, Tajima T, et al. The future is fibre accelerators[J]. Nature Photonics, 2013, 7(4): 258-261. doi: 10.1038/nphoton.2013.75
    [10] Wilks S, Kruer W, Tabak M, et al. Absorption of ultra-intense laser pulses[J]. Physical Review Letters, 1992, 69(9): 1383-1386. doi: 10.1103/PhysRevLett.69.1383
    [11] Wilks S C, Kruer W L. Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas[J]. IEEE Journal of Quantum Electronics, 1997, 33(11): 1954-1968. doi: 10.1109/3.641310
    [12] Davies J R. Laser absorption by overdense plasmas in the relativistic regime[J]. Plasma Physics and Controlled Fusion, 2008, 51: 014006.
    [13] Kruer W. The physics of laser plasma interactions [M]. CRC Press. 2019.
    [14] Brunel F. Not-so-resonant, resonant absorption[J]. Physical Review Letters, 1987, 59(1): 52-55. doi: 10.1103/PhysRevLett.59.52
    [15] Kruer W. Estabrook K J× B heating by very intense laser light[J]. The Physics of Fluids, 1985, 28(1): 430-432. doi: 10.1063/1.865171
    [16] Wilks S, Langdon A, Cowan T, et al. Energetic proton generation in ultra-intense laser–solid interactions[J]. Physics of Plasmas, 2001, 8(2): 542-549. doi: 10.1063/1.1333697
    [17] Hatchett S P, Brown C G, Cowan T E, et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets[J]. Physics of Plasmas, 2000, 7(5): 2076-2082. doi: 10.1063/1.874030
    [18] Pukhov A. Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser[J]. Physical Review Letters, 2001, 86(16): 3562-3565. doi: 10.1103/PhysRevLett.86.3562
    [19] Mora P. Plasma expansion into a vacuum[J]. Physical Review Letters, 2003, 90: 185002. doi: 10.1103/PhysRevLett.90.185002
    [20] Mora P. Thin-foil expansion into a vacuum[J]. Physical Review E, 2005, 72: 056401.
    [21] Passoni M, Lontano M. Theory of light-ion acceleration driven by a strong charge separation[J]. Physical Review Letters, 2008, 101: 115001. doi: 10.1103/PhysRevLett.101.115001
    [22] Tikhonchuk V, Andreev A, Bochkarev S, et al. Ion acceleration in short-laser-pulse interaction with solid foils[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B869. doi: 10.1088/0741-3335/47/12B/S69
    [23] Malka G, Miquel J. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J]. Physical Review Letters, 1996, 77(1): 75-78. doi: 10.1103/PhysRevLett.77.75
    [24] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics, 2012, 75: 056401. doi: 10.1088/0034-4885/75/5/056401
    [25] Esirkepov T, Borghesi M, Bulanov S, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92: 175003. doi: 10.1103/PhysRevLett.92.175003
    [26] Chen M, Pukhov A, Yu T, et al. Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse[J]. Physical Review Letters, 2009, 103: 024801. doi: 10.1103/PhysRevLett.103.024801
    [27] Macchi A, Cattani F, Liseykina T V, et al. Laser acceleration of ion bunches at the front surface of overdense plasmas[J]. Physical Review Letters, 2005, 94: 165003. doi: 10.1103/PhysRevLett.94.165003
    [28] Robinson A, Zepf M, Kar S, et al. Radiation pressure acceleration of thin foils with circularly polarized laser pulses[J]. New Journal of Physics, 2008, 10: 013021. doi: 10.1088/1367-2630/10/1/013021
    [29] Qiao B, Zepf M, Borghesi M, et al. Stable GeV ion-beam acceleration from thin foils by circularly polarized laser pulses[J]. Physical Review Letters, 2009, 102: 145002. doi: 10.1103/PhysRevLett.102.145002
    [30] Zhang X M, Shen B F, Li X M, et al. Multistaged acceleration of ions by circularly polarized laser pulse: Monoenergetic ion beam generation[J]. Physics of Plasmas, 2007, 14: 073101.
    [31] Zhuo H B, Chen Z L, Yu W, et al. Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser[J]. Physical Review Letters, 2010, 105: 065003.
    [32] Yu T P, Pukhov A, Shvets G, et al. Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil[J]. Physics of Plasmas, 2011, 18: 043110.
    [33] Yan X, Lin C, Sheng ZM, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 2008, 100: 135003. doi: 10.1103/PhysRevLett.100.135003
    [34] Pegoraro F, Bulanov S V. Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse[J]. Physical Review Letters, 2007, 99: 065002.
    [35] Yin Y, Yu W, Yu M, et al. Influence of target thickness on the generation of high-density ion bunches by ultrashort circularly polarized laser pulses[J]. Physics of Plasmas, 2008, 15: 093106. doi: 10.1063/1.2977485
    [36] Palmer C, Schreiber J, Nagel S, et al. Rayleigh-Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser[J]. Physical Review Letters, 2012, 108: 225002. doi: 10.1103/PhysRevLett.108.225002
    [37] Henig A, Steinke S, Schnürer M, et al. Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2009, 103: 245003. doi: 10.1103/PhysRevLett.103.245003
    [38] Bin J, Ma W, Wang H, et al. Ion acceleration using relativistic pulse shaping in near-critical-density plasmas[J]. Physical Review Letters, 2015, 115(6): 064801. doi: 10.1103/PhysRevLett.115.064801
    [39] Gamaly E. Instability of the overdense plasma boundary induced by the action of a powerful photon beam[J]. Physical Review E, 1993, 48(4): 2924-2928. doi: 10.1103/PhysRevE.48.2924
    [40] Sgattoni A, Sinigardi S, Fedeli L, et al. Laser-driven Rayleigh-Taylor instability: plasmonic effects and three-dimensional structures[J]. Physical Review E, 2015, 91: 013106. doi: 10.1103/PhysRevE.91.013106
    [41] Eliasson B. Instability of a thin conducting foil accelerated by a finite wavelength intense laser[J]. New Journal of Physics, 2015, 17: 033026. doi: 10.1088/1367-2630/17/3/033026
    [42] Zhang X, Shen B, Ji L, et al. Instabilities in interaction of circularly polarized laser pulse and overdense target[J]. Physics of Plasmas, 2011, 18: 073101. doi: 10.1063/1.3603821
    [43] Yan X, Chen M, Sheng Z, et al. Self-induced magnetic focusing of proton beams by Weibel-like instability in the laser foil-plasma interactions[J]. Physics of Plasmas, 2009, 16: 044501. doi: 10.1063/1.3104703
    [44] Wan Y, Pai CH, Zhang C, et al. Physical mechanism of the transverse instability in radiation pressure ion acceleration[J]. Physical Review Letters, 2016, 117: 234801. doi: 10.1103/PhysRevLett.117.234801
    [45] Chen M, Kumar N, Pukhov A, et al. Stabilized radiation pressure dominated ion acceleration from surface modulated thin-foil targets[J]. Physics of Plasmas, 2011, 18: 073106. doi: 10.1063/1.3606562
    [46] Yu T P, Pukhov A, Shvets G, et al. Stable laser-driven proton beam acceleration from a two-ion-species ultrathin foil[J]. Physical Review Letters, 2010, 105: 065002. doi: 10.1103/PhysRevLett.105.065002
    [47] Shen X, Qiao B, Zhang H, et al. Achieving stable radiation pressure acceleration of heavy ions via successive electron replenishment from ionization of a high-Z material coating[J]. Physical Review Letters, 2017, 118: 204802. doi: 10.1103/PhysRevLett.118.204802
    [48] Qiao B, Zepf M, Borghesi M, et al. Radiation-pressure acceleration of ion beams from nanofoil targets: The leaky light-sail regime[J]. Physical Review Letters, 2010, 105: 155002. doi: 10.1103/PhysRevLett.105.155002
    [49] Wu D, Zheng C, Qiao B, et al. Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses[J]. Physical Review E, 2014, 90: 023101. doi: 10.1103/PhysRevE.90.023101
    [50] Zhou M, Yan X, Mourou G, et al. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime[J]. Physics of Plasmas, 2016, 23: 043112. doi: 10.1063/1.4947544
    [51] Yu T P, Chen M, Pukhov A. High quality GeV proton beams from a density-modulated foil target[J]. Laser and Particle Beams, 2009, 27(4): 611-617. doi: 10.1017/S0263034609990334
    [52] Hong X R, Xie B S, Zhang S, et al. High quality ion acceleration from a double-layer target dominated by the radiation pressure of a transversely Gaussian laser pulse[J]. Physics of Plasmas, 2010, 17: 103107. doi: 10.1063/1.3503604
    [53] Chen M, Pukhov A, Sheng Z, et al. Laser mode effects on the ion acceleration during circularly polarized laser pulse interaction with foil targets[J]. Physics of Plasmas, 2008, 15: 113103. doi: 10.1063/1.3019105
    [54] Silva L O, Marti M, Davies J R, et al. Proton shock acceleration in laser-plasma interactions[J]. Physical Review Letters, 2004, 92: 015002. doi: 10.1103/PhysRevLett.92.015002
    [55] Forslund D, Shonk C. Formation and structure of electrostatic collisionless shocks[J]. Physical Review Letters, 1970, 25(25): 1699-1702. doi: 10.1103/PhysRevLett.25.1699
    [56] Ji L L, Shen B F, Zhang X M, et al. Generating monoenergetic heavy-ion bunches with laser-induced electrostatic shocks[J]. Physical Review Letters, 2008, 101: 164802.
    [57] Fiuza F, Stockem A, Boella E, et al. Laser-driven shock acceleration of monoenergetic ion beams[J]. Physical Review Letters, 2012, 109: 215001.
    [58] Matsui R, Fukuda Y, Kishimoto Y. Quasimonoenergetic proton bunch acceleration driven by hemispherically converging collisionless shock in a hydrogen cluster coupled with relativistically induced transparency[J]. Physical Review Letters, 2019, 122: 014804.
    [59] Haberberger D, Tochitsky S, Fiuza F, et al. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams[J]. Nature Physics, 2012, 8(1): 95-99. doi: 10.1038/nphys2130
    [60] Macchi A, Borghesi M, Passoni M. Ion acceleration by superintense laser-plasma interaction[J]. Reviews of Modern Physics, 2013, 85(2): 751-793. doi: 10.1103/RevModPhys.85.751
    [61] Zhang H, Shen B, Wang W, et al. Collisionless shock acceleration of high-flux quasimonoenergetic proton beams driven by circularly polarized laser pulses[J]. Physical Review Letters, 2017, 119: 164801. doi: 10.1103/PhysRevLett.119.164801
    [62] Yin L, Albright B, Hegelich B, et al. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets[J]. Physics of plasmas, 2007, 14: 056706. doi: 10.1063/1.2436857
    [63] Yin L, Albright B, Bowers K, et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets[J]. Physical Review Letters, 2011, 107: 045003. doi: 10.1103/PhysRevLett.107.045003
    [64] Qiao B, Shen X, He H, et al. Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses[J]. Plasma Physics and Controlled Fusion, 2018, 61: 014039.
    [65] Esirkepov T Z, Bulanov S, Nishihara K, et al. Proposed double-layer target for the generation of high-quality laser-accelerated ion beams[J]. Physical Review Letters, 2002, 89: 175003. doi: 10.1103/PhysRevLett.89.175003
    [66] Fourkal E, Velchev I, Ma CM. Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers[J]. Physical Review E, 2005, 71: 036412. doi: 10.1103/PhysRevE.71.036412
    [67] Ditmire T, Tisch J, Springate E, et al. High-energy ions produced in explosions of superheated atomic clusters[J]. Nature, 1997, 386(6620): 54-56. doi: 10.1038/386054a0
    [68] Nishihara K, Amitani H, Murakami M, et al. High energy ions generated by laser driven Coulomb explosion of cluster[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 464(13): 98-102.
    [69] Shen X F, Qiao B, Zhang H, et al. Electrostatic capacitance-type acceleration of ions with an intense few-cycle laser pulse[J]. Applied Physics Letters, 2019, 114: 144102.
    [70] Mackinnon A J, Borghesi M, Hatchett S, et al. Effect of plasma scale length on multi-MeV proton production by intense laser pulses[J]. Physical Review Letters, 2001, 86(9): 1769-1772. doi: 10.1103/PhysRevLett.86.1769
    [71] Allen M, Patel P K, Mackinnon A, et al. Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils[J]. Physical Review Letters, 2004, 93: 265004.
    [72] Fuchs J, Sentoku Y, Karsch S, et al. Comparison of laser ion acceleration from the front and rear surfaces of thin foils[J]. Physical Review Letters, 2005, 94: 045004.
    [73] Schwoerer H, Pfotenhauer S, Jackel O, et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 2006, 439(7075): 445-448. doi: 10.1038/nature04492
    [74] Hegelich B M, Albright B J, Cobble J, et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444. doi: 10.1038/nature04400
    [75] Margarone D, Klimo O, Kim I J, et al. Laser-Driven Proton Acceleration Enhancement by Nanostructured Foils[J]. Physical Review Letters, 2012, 109: 2348011.
    [76] Margarone D, Kim I J, Psikal J, et al. Laser-driven high-energy proton beam with homogeneous spatial profile from a nanosphere target[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18: 071304.
    [77] Wagner F, Deppert O, Brabetz C, et al. Maximum proton energy above 85 mev from the relativistic interaction of laser pulses with micrometer thick CH<sub>2</sub> targets[J]. Physical Review Letters, 2016, 116: 205002.
    [78] Steinke S, Henig A, Schnurer M, et al. Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets[J]. Laser and Particle Beams, 2010, 28(1): 215-221. doi: 10.1017/S0263034610000157
    [79] Henig A, Kiefer D, Markey K, et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime[J]. Physical Review Letters, 2009, 103: 045002.
    [80] Kar S, Kakolee K F, Qiao B, et al. Ion acceleration in multispecies targets driven by intense laser radiation pressure[J]. Physical Review Letters, 2012, 109: 185006.
    [81] Steinke S, Hilz P, Schnurer M, et al. Stable laser-ion acceleration in the light sail regime[J]. Physical Review Special Topics–Accelerators and Beams, 2013, 16: 011303.
    [82] Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short Gaussian pulse by a plasma lens[J]. Physical Review Letters, 2011, 107: 265002.
    [83] Kim I J, Pae K H, Choi I W, et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J]. Physics of Plasmas, 2016, 23: 070701.
    [84] Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724.
    [85] Ma W J, Kim I J, Yu J Q, et al. Laser acceleration of highly energetic carbon ions using a double-layer target composed of slightly underdense plasma and ultrathin foil[J]. Physical Review Letters, 2019, 122: 014803.
    [86] Zhu J G, Zhu K, Tao L, et al. Distribution uniformity of laser-accelerated proton beams[J]. Chinese Physics C, 2017, 41(9): 146-154.
    [87] Zhu J G, Wu M J, Liao Q, et al. Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport[J]. Physical Review Accelerators and Beams, 2019, 22: 061302.
    [88] Borghesi M, Campbell D H, Schiavi A, et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique[J]. Physics of Plasmas, 2002, 9(5): 2214-2220. doi: 10.1063/1.1459457
    [89] Mackinnon A J, Patel P K, Town R P, et al. Proton radiography as an electromagnetic field and density perturbation diagnostic[J]. Review of Scientific Instruments, 2004, 75(10): 3531-3536. doi: 10.1063/1.1788893
    [90] Wang W, Cai H, Teng J, et al. Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target[J]. Physics of Plasmas, 2018, 25: 083111. doi: 10.1063/1.5000991
    [91] Shan L, Cai H, Zhang W, et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2018, 120: 195001. doi: 10.1103/PhysRevLett.120.195001
    [92] Yang X Y, Xiao C J, Chen Y H, et al. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)[J]. Review of Scientific Instruments, 2016, 87: 11D608.
    [93] Roth M, Cowan T E, Key M H, et al. Fast ignition by intense laser-accelerated proton beams[J]. Physical Review Letters, 2001, 86(3): 436-439. doi: 10.1103/PhysRevLett.86.436
    [94] Key M H. Status of and prospects for the fast ignition inertial fusion concept[J]. Physics of Plasmas, 2007, 14: 055502.
    [95] Faenov A Y, Pikuz T A, Fukuda Y, et al. Ionography of nanostructures with the use of a laser plasma of cluster targets[J]. JETP Letters, 2009, 89(10): 485-491. doi: 10.1134/S0021364009100038
    [96] Faenov A Y, Pikuz T A, Fukuda Y, et al. Submicron ionography of nanostructures using a femtosecond-laser-driven-cluster-based source[J]. Applied Physics Letters, 2009, 95: 101107.
    [97] Kellnberger S, Assmann W, Lehrack S, et al. Ionoacoustic tomography of the proton Bragg peak in combination with ultrasound and optoacoustic imaging[J]. Scientific Reports, 2016, 6: 2P305.
    [98] Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004.
    [99] Mancic A, Levy A, Harmand M, et al. Picosecond short-range disordering in isochorically heated Aluminum at solid density[J]. Physical Review Letters, 2010, 104: 035002.
    [100] Pelka A, Gregori G, Gericke D O, et al. Ultrafast melting of carbon induced by intense proton beams[J]. Physical Review Letters, 2010, 105: 265701.
    [101] Bulanov S S, Brantov A, Bychenkov V Y, et al. Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses[J]. Medical Physics, 2008, 35(5): 1770-1776. doi: 10.1118/1.2900112
    [102] Malka V, Fritzler S, Lefebvre E, et al. Practicability of protontherapy using compact laser systems[J]. Medical Physics, 2004, 31(6): 1587-1592. doi: 10.1118/1.1747751
    [103] Loeffler J S, Durante M. Charged particle therapy-optimization, challenges and future directions[J]. Nature Reviews Clinical Oncology, 2013, 10(7): 411-424. doi: 10.1038/nrclinonc.2013.79
    [104] Krushelnick K, Clark E L, Allott R, et al. Ultrahigh-intensity laser-produced plasmas as a compact heavy ion injection source[J]. IEEE Transactions on Plasma Science, 2000, 28(4): 1184-1189.
    [105] Antici P, Fazi M, Lombardi A, et al. Numerical study of a linear accelerator using laser-generated proton beams as a source[J]. Journal of Applied Physics, 2008, 104: 124901.
    [106] Antici P, Migliorati M, Mostacci A, et al. A compact post-acceleration scheme for laser-generated protons[J]. Physics of Plasmas, 2011, 18: 073103.
    [107] Wang W, Shen B, Zhang H, et al. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system[J]. AIP Advances, 2015, 5: 107214. doi: 10.1063/1.4934485
    [108] Teng J, Gu Y, Chen J, et al. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 826: 15-20.
    [109] Teng J, Zhao Z, Zhu B, et al. Time-resolved radiography using chirp-pulse proton beams[J]. Chinese Physics Letters, 2011, 28: 035203. doi: 10.1088/0256-307X/28/3/035203
    [110] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high-gain with ultrapowerful lasers[J]. Physics of Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [111] Fernandez J C, Honrubia J J, Albright B J, et al. Progress and prospects of ion-driven fast ignition[J]. Nuclear Fusion, 2009, 49: 065004.
    [112] Fiorini F, Kirby D, Borghesi M, et al. Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams[J]. Physics in Medicine and Biology, 2011, 56(21): 6969-6982. doi: 10.1088/0031-9155/56/21/013
    [113] Richter C, Karsch L, Dammene Y, et al. A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons[J]. Physics in Medicine and Biology, 2011, 56(6): 1529-1543. doi: 10.1088/0031-9155/56/6/002
    [114] Boustani J, Grapin M, Laurent P A, et al. The 6th R of radiobiology: reactivation of anti-tumor immune response[J]. Cancers, 2019, 11(6): 860. doi: 10.3390/cancers11060860
    [115] Mole R. Whole body irradiation—radiobiology or medicine?[J]. The British Journal of Radiology, 1953, 26(305): 234-241. doi: 10.1259/0007-1285-26-305-234
    [116] McLaughlin M, Patin E C, Pedersen M, et al. Inflammatory microenvironment remodelling by tumour cells after radiotherapy[J]. Nature Reviews Cancer, 2020: 1-15.
    [117] Goto T. Radiation as an in situ auto-vaccination: Current perspectives and challenges[J]. Vaccines, 2019, 7(3): 100. doi: 10.3390/vaccines7030100
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  3207
  • HTML全文浏览量:  600
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-30
  • 修回日期:  2020-07-06
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回