[1] |
Deeney C, Douglas M R, Spielman R B. Enhancement of X-ray power from a Z pinch using nested-wire arrays[J]. Physical Review Letters, 1998, 81(22): 4883-4886. doi: 10.1103/PhysRevLett.81.4883
|
[2] |
Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Reviews of Modern Physics, 2000, 72(1): 167-223. doi: 10.1103/RevModPhys.72.167
|
[3] |
Cuneo M E, Vesey R A, Porter J L, et al. Development and characterization of a Z-pinch-driven hohlraum high-yield inertial confinement fusion target concept[J]. Physics of Plasmas, 2001, 8(5): 2257-2267. doi: 10.1063/1.1348328
|
[4] |
Sanford T W L, Nash T J, Mock R C, et al. Evidence and mechanisms of axial-radiation asymmetry in dynamic hohlraums driven by wire-array Z pinches[J]. Physics of Plasmas, 2005, 12: 022701. doi: 10.1063/1.1850479
|
[5] |
Cuneo M E, Vesey R A, Porter J L, et al. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions[J]. Physical Review Letters, 2002, 88: 215004. doi: 10.1103/PhysRevLett.88.215004
|
[6] |
Slutz S A, Vesey R A, Herrmann M C. Compensation for time-dependent radiation-drive asymmetries in inertial-fusion capsules[J]. Physical Review Letters, 2007, 99: 175001. doi: 10.1103/PhysRevLett.99.175001
|
[7] |
Rochau G A, Bailey J E, Chandler G A, et al. High performance capsule implosions driven by the Z-pinch dynamic hohlraum[J]. Plasma Physics and Controlled Fusion, 2007, 49: B591-B600. doi: 10.1088/0741-3335/49/12B/S55
|
[8] |
Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
|
[9] |
Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
|
[10] |
Bailey J E, Nagayama T, Loisel G P, et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures[J]. Nature, 2014, 517(1): 56-59.
|
[11] |
Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
|
[12] |
Lebedev S V, Frank A, Ryutov D D. Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities[J]. Reviews of Modern Physics, 2019, 91: 025002. doi: 10.1103/RevModPhys.91.025002
|
[13] |
Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348: 1455-1460. doi: 10.1126/science.aaa7471
|
[14] |
Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality—a review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1: 48-58. doi: 10.1016/j.mre.2016.01.004
|
[15] |
Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire Array Z-pinch and dynamic holhraum in the IAPCM[J]. Matter and Radiation at Extremes, 2016, 1: 135-152. doi: 10.1016/j.mre.2016.06.001
|
[16] |
Xu Rongkun, Li Zhenghong, Yang Jianlun, et al. Study of tungsten wire array Z-pinch implosion on Qiang-Guang I facility[J]. Chinese Physics B, 2005, 14(8): 1613-1617. doi: 10.1088/1009-1963/14/8/026
|
[17] |
Zhu Xinlei, Zou Xiaobing, Zhang Ran, et al. X-ray backlighting of the initial stage of single and multiwire Z-pinch[J]. IEEE Trans on Plasma Science, 2012, 40(12): 3329-3333. doi: 10.1109/TPS.2012.2218622
|
[18] |
Wang Liangping, Li Mo, Han Juanjuan. Conversion of electromagnetic energy in Z-pinch processes of single planar wire arrays at 1.5MA[J]. Physics of Plasmas, 2014, 21(6): 062706. doi: 10.1063/1.4882876
|
[19] |
Wu Jian, Lu Yihan, Sun Fengju, et al. Preconditioned wire array Z-pinches driven by a double pulse current generator[J]. Plasma Physics and Controlled Fusion, 2018, 60: 075014. doi: 10.1088/1361-6587/aac4fe
|
[20] |
Vesey R A, Herrmann M C, Lemke R W, et al. Target design for high fusion yield with the double Z-pinch-driven hohlraum[J]. Physics of Plasmas, 2007, 14: 056302. doi: 10.1063/1.2472364
|
[21] |
Olson R E, Leeper R J, Batha S H, et al. Pulsed power indirect drive approach to inertial confinement fusion[J]. High Energy Density Physics, 2020, 36: 100749.
|
[22] |
Stygar W A, Ives H C, Fehl D L, et al. X-ray emission from Z pinches at 10<sup>7</sup> A: Current scaling, gap closure, and shot-to-shot fluctuations[J]. Physical Review E, 2004, 69: 046403. doi: 10.1103/PhysRevE.69.046403
|
[23] |
Mazarakis M G, Cuneo M E, Stygar W A, et al. X-ray emission current scaling experiments for compact single-tungsten-wire arrays at 80-nanosecond implosion times[J]. Physical Review E, 2009, 79: 016412. doi: 10.1103/PhysRevE.79.016412
|
[24] |
Mehlhorn T A, Bailey J E, Bennett G, et al. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies[J]. Plasma Physics and Controlled Fusion, 2003, 45: A325-A334. doi: 10.1088/0741-3335/45/12A/021
|
[25] |
Slutz S A, Peterson K J, Vesey R A, et al. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions[J]. Physics of Plasmas, 2006, 13: 102701. doi: 10.1063/1.2354587
|
[26] |
Xiao Delong, Sun Shunkai, Zhao Yingkui, et al. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums[J]. Physics of Plasmas, 2015, 22: 052709. doi: 10.1063/1.4921332
|
[27] |
Ruiz C L, Cooper G W, Slutz S A, et al. Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums[J]. Physical Review Letters, 2004, 93: 015001. doi: 10.1103/PhysRevLett.93.015001
|
[28] |
Slutz S A, Olson C L, Peterson P. Low mass recyclable transmission lines for Z-pinch driven inertial fusion[J]. Physics of Plasmas, 2003, 10(2): 429-437. doi: 10.1063/1.1533789
|
[29] |
肖德龙, 孙顺凯, 薛创, 等. Z箍缩动态黑腔形成过程和关键影响因素数值模拟研究[J]. 物理学报, 2015, 64:235203. (Xiao Delong, Sun Shunkai, Xue Chuang, et al. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation[J]. Acta Physica Sinica, 2015, 64: 235203 doi: 10.7498/aps.64.235203
|
[30] |
Xiao Delong, Ye Fan, Meng Shijian, et al. Preliminary investigation on the radiation transfer in dynamic hohlraums on the PTS facility[J]. Physics of Plasmas, 2017, 24: 092701. doi: 10.1063/1.4994331
|
[31] |
Meng Shijian, Hu Qingyuan, Nin Jiaming, et al. Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1[J]. Physics of Plasmas, 2017, 24: 014505. doi: 10.1063/1.4974771
|
[32] |
Ye Fan, Xiao Delong, Meng Shijian, et al. Investigation on the main characteristics of dynamic hohlraum formation on the Julong-1 facility[J]. submitted to Physics of Plasmas.
|
[33] |
Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
|
[34] |
Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA 100-ns Z facility[J]. Physical Review Letters, 2010, 105: 185001. doi: 10.1103/PhysRevLett.105.185001
|
[35] |
Sinars D B, Slutz S A, Herrmann M C, et al. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners[J]. Physics of Plasmas, 2011, 18: 056301. doi: 10.1063/1.3560911
|
[36] |
McBride R D, Slutz S A, Jennings C A, et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 2012, 109: 135004. doi: 10.1103/PhysRevLett.109.135004
|
[37] |
McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Physics of Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079
|
[38] |
Peterson K J, Sinars D B, Yu E P, et al. Electrothermal instability growth in magnetically driven pulsed power liners[J]. Physics of Plasmas, 2012, 19: 092701. doi: 10.1063/1.4751868
|
[39] |
Peterson K J, Yu E P, Sinars D B, et al. Simulations of electrothermal instability growth in solid aluminum rods[J]. Physics of Plasmas, 2013, 20: 056305. doi: 10.1063/1.4802836
|
[40] |
Peterson K J, Awe T J, Yu E P, et al. Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors[J]. Physical Review Letters, 2014, 112: 135002. doi: 10.1103/PhysRevLett.112.135002
|
[41] |
Awe T J, McBride R D, Jennings C A, et al. Observations of modified three-dimensional instability structure for imploding Z-pinch liners that are premagnetized with an axial field[J]. Physical Review Letters, 2013, 111: 235005. doi: 10.1103/PhysRevLett.111.235005
|
[42] |
Awe T J, Jennings C A, McBride R D, et al. Modified helix-like instability structure on imploding Z-pinch liners that are preimposed with a uniform axial magnetic field[J]. Physics of Plasmas, 2014, 21: 056303. doi: 10.1063/1.4872331
|
[43] |
Wang Guanqiong, Xiao Delong, Wang Xiaoguang, et al. Effect of external axial magnetic field on the early stage instabilities in magnetized cylindrical liners[J]. Physics of Plasmas, 2019, 26: 112704. doi: 10.1063/1.5121596
|
[44] |
Wang Guanqiong, Xiao Delong, Dan Jiakun, et al. Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility[J]. Chinese Physics B, 2019, 28: 025203. doi: 10.1088/1674-1056/28/2/025203
|
[45] |
Wang Xiaoguang, Sun Shunkai, Xiao Delong, et al. Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the Primary Test Stand[J]. Chinese Physics B, 2019, 28: 035201. doi: 10.1088/1674-1056/28/3/035201
|
[46] |
Harvey-Thompson A J, Weis M R, Harding E C, et al. Diagnosing and mitigating laser preheat induced mix in MagLIF[J]. Physics of Plasmas, 2018, 25: 112705. doi: 10.1063/1.5050931
|
[47] |
Harvey-Thompson A J, Geissel M, Jennings C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy[J]. Physics of Plasmas, 2019, 26: 032707. doi: 10.1063/1.5086044
|
[48] |
Peterson K. Progress in preconditioning MagLIF fuel and its impact on performance[R]. SAND2017-6187PE, 2017.
|
[49] |
Slutz S A, Gomez M R, Hansen S B, et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 2018, 25: 112706. doi: 10.1063/1.5054317
|
[50] |
Slutz S A, Jennings C A, Awe T J, et al. Auto-magnetizing liners for magnetized inertial fusion[J]. Physics of Plasmas, 2017, 24: 012704. doi: 10.1063/1.4973551
|
[51] |
Shipley G A, Awe T J, Hutsel B T, et al. Implosion of auto-magnetizing helical liners on the Z facility[J]. Physics of Plasmas, 2019, 26: 052705. doi: 10.1063/1.5089468
|
[52] |
Knapp P F, Gomez M R, Hansen S B, et al. Origins and effects of mix on magnetized liner inertial fusion target performance[J]. Physics of Plasmas, 2019, 26: 012704. doi: 10.1063/1.5064548
|
[53] |
Hansen S B, Gomez M R, Sefkow A B, et al. Diagnosing magnetized liner inertial fusion experiments on Z[J]. Physics of Plasmas, 2015, 22: 056313. doi: 10.1063/1.4921217
|
[54] |
Gomez M. Performance scaling with drive parameters in Magnetized Liner Inertial Fusion experiments[C]//61st Annual Meeting of the APS Division of Plasma Physics. 2019.
|
[55] |
Ampleford D J, Jones D J, Jennings C A, et al. Contrasting physics in wire array Z pinch sources of 1-20 keV emission on the Z facility[J]. Physics of Plasmas, 2014, 21: 056708. doi: 10.1063/1.4876621
|
[56] |
Ampleford D J, Hansen S B, Jennings C A, et al. Opacity and gradients in aluminum wire array Z-pinch implosions on the Z pulsed power facility[J]. Physics of Plasmas, 2014, 21: 031201. doi: 10.1063/1.4865224
|
[57] |
Peterson R R, Peterson D L, Watt R G, et al. Blast wave radiation source measurement experiments on the Z Z-pinch facility[J]. Physics of Plasmas, 2006, 13: 056901. doi: 10.1063/1.2186050
|
[58] |
Chrien R E, Matuska W, Idzorek Jr. G, et al Measurement and simulation of apertures on Z hohlraums[J]. Review of Scientific Instruments, 1999, 70(1): 557-560. doi: 10.1063/1.1149354
|
[59] |
李沫, 王亮平. Z 箍缩软X 射线辐射能量薄膜量热计改进技术[J]. 强激光与粒子束, 2013, 25(8):2142-2146. (Li Mo, Wang Liangping. Improvement on resistive bolometer for measuring total soft X-ray yield generated by Z-pinches[J]. High Power Laser and Particle Beams, 2013, 25(8): 2142-2146 doi: 10.3788/HPLPB20132508.2142
|
[60] |
盛亮, 李阳, 袁媛, 等. 表面绝缘铝平面丝阵Z箍缩实验研究[J]. 物理学报, 2014, 63:055201. (Sheng Liang, Li Yang, Yuan Yuan, et al. Experimental study of insulated aluminum planar wire array Z pinches[J]. Acta Physica Sinica, 2014, 63: 055201 doi: 10.7498/aps.63.055201
|
[61] |
Bailey J E, Rochau G A, Iglesias C A, et al. Iron-plasma transmission measurements at temperatures above 150 eV[J]. Physical Review Letters, 2008, 99: 265002.
|
[62] |
Bailey J E, Rochau G A, Mancini R C, et al. Diagnosis of X-ray heated Mg/Fe opacity research plasmas[J]. Review of Scientific Instruments, 2008, 79: 113104. doi: 10.1063/1.3020710
|
[63] |
Flicker D G, Benage J F, Desjarlais M P, et al. Sandia dynamic materials program strategic plan[R]. SAND2017-4664R, 2017.
|
[64] |
Asay J R, Hall C A, Konard C H, et al. Use of Z-pinch sources for high pressure equation-of-state studies[J]. International Journal of Impact Engineering, 1999, 23: 27-38. doi: 10.1016/S0734-743X(99)00059-7
|
[65] |
Lemke R W, Knudson M D, Davis J-P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38: 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
|
[66] |
Cochrane K R, Lemke R W, Riford Z, et al. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper[J]. Journal of Applied Physics, 2016, 119: 105902. doi: 10.1063/1.4943417
|
[67] |
Knudson M D, Desjarlais M P, Dolan D H. Shock-wave exploration of the high-pressure phases of carbon[J]. Science, 2008, 322: 1822-1825. doi: 10.1126/science.1165278
|
[68] |
Davis J-P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. Journal of Applied Physics, 2014, 116: 204903. doi: 10.1063/1.4902863
|
[69] |
Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014, 115: 043530. doi: 10.1063/1.4863463
|
[70] |
王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63:196201. (Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS[J]. Acta Physica Sinica, 2014, 63: 196201 doi: 10.7498/aps.63.196201
|
[71] |
郭帅, 王贵林, 张朝晖, 等. 聚龙一号准等熵压缩实验负载优化研究[J]. 强激光与粒子束, 2016, 28:015015. (Guo Shuai, Wang Guilin, Zhang Zhaohui, et al. Optimization of load configurations for isentropic compression experiments on PTS[J]. High Power Laser and Paticle Beams, 2016, 28: 015015 doi: 10.11884/HPLPB201628.015015
|
[72] |
王贵林, 张朝晖, 郭帅, 等. 聚龙一号装置上铜的准等熵压缩线测量实验研究[J]. 强激光与粒子束, 2016, 28:055010. (Wang Guilin, Zhang Zhaohui, Guo Shuai, et al. Experimental measurement of quasi-isentrope for copper on PTS[J]. High Power Laser and Paticle Beams, 2016, 28: 055010 doi: 10.11884/HPLPB201628.055010
|
[73] |
Bennett M J, Lebedev S V, Hall G N, et al. Formation of radiatively cooled, supersonically rotating, plasma flows in Z-pinch experiments: Towards the development of an experimental platform to study accretion disk physics in the laboratory[J]. High Energy Density Physics, 2015, 17: 63-67. doi: 10.1016/j.hedp.2015.02.001
|
[74] |
Coverdale C A, Deeney C, Velikovich, et al. Neutron production and implosion characteristics of a deuterium gas-puff Z pinch[J]. Physics of Plasmas, 2007, 14: 022706. doi: 10.1063/1.2446177
|
[75] |
Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Special Topics–Accelerators and Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
|
[76] |
Grabovski E V. Wire array investigation on Angara-5-1 and Baikal Project[C]//IEEE Pulsed Power & Plasma Science. 2013.
|
[77] |
彭先觉, 王真. Z箍缩驱动聚变-裂变混合能源堆总体概念研究[J]. 强激光与粒子束, 2014, 26:090201. (Peng Xianjue, Wang Zhen. Conceptual research on Z-pinch driven fusion-fission hybrid reactor[J]. High Power Laser and Particle Beams, 2014, 26: 090201 doi: 10.11884/HPLPB201426.090201
|