留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波功率放大器发展概述

李建兵 林鹏飞 郝保良 孙建邦

李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32: 073001. doi: 10.11884/HPLPB202032.200095
引用本文: 李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32: 073001. doi: 10.11884/HPLPB202032.200095
Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001. doi: 10.11884/HPLPB202032.200095
Citation: Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001. doi: 10.11884/HPLPB202032.200095

微波功率放大器发展概述

doi: 10.11884/HPLPB202032.200095
基金项目: 国家“核高基”重大专项项目(2014ZX01009-101-006,2017ZX01004-101-009A)
详细信息
    作者简介:

    李建兵(1976—),男,博士,副教授,研究方向为微波功率模块;49286894@qq.com

  • 中图分类号: TN83

Overview of development of microwave power amplifiers

  • 摘要:

    微波功率放大器分为真空和固态两类,分别分析了两类器件的原理和特点,然后介绍了它们的发展历史、当前的技术研究状况和未来发展趋势。重点介绍了两种器件相结合的产物——微波功率模块,包括微波功率模块的产生过程和当前国内外的发展状况,并对未来的发展趋势进行了分析和预测。

  • 图  1  真空功率器件MTTF概况

    Figure  1.  Mean time to failure (MTTF) of vacuum power device

    图  2  MPM的组成

    Figure  2.  Composition of microwave power module(MPM)

    图  3  当前MPM频率功率分布

    Figure  3.  Current frequency power distribution of MPM

    图  4  M1871 MPM

    Figure  4.  M1871 MPM

    图  5  中国电子科技集团公司第十二研究所4~18 GHz 50 W MPM

    Figure  5.  4~8 GHz 50 W MPM of Beijing Vacuum Electronics Research Institute

    图  6  Ku频段500 W脉冲双管MPM

    Figure  6.  Ku band 500 W double tube pulse MPM

    图  7  TH24512 MPM

    Figure  7.  TH24512 MPM

    图  8  信息工程大学的超薄EPC组件

    Figure  8.  Ultra-thin EPC components of Information Engineering University

    图  9  真空、固态及MPM最新饱和输出功率随频率变化图

    Figure  9.  Saturated output power vs frequency of current microwave power amplifiers

    表  1  国内外典型毫米波产品

    Table  1.   Typical millimeter wave products

    serialfrequency/GHzpower/Wduty cycle/%efficiency/%manufacturermain application
    1 231~235 5~25 50 11 L3 radar(SAR)
    2 90.6~91.4 300 50 L3 seeker,radar
    93~95 50 CW 15 CPI radar communication
    W band(bandwidth 5 GHz) 150 20 20 CETC12 radar communication
    W band(bandwidth 0.5 GHz) 200 10 THALES seeker,radar
    3 81~86 200 CW 50 L3 communication
    4 47~52.4 125 CW 35 L3 communication
    47~52.4 120 CW 30 CETC12 communication
    43.5~45.5 200 CW 46 L3 communication
    5 34~36 1000 50 40 L3 seeker,radar
    32~37 700 50 40 CETC12 radar
    27.5~31 500 CW 57 L3/NEC/CPI communication
    27.5~31 300 CW 45 CETC12 communication
    下载: 导出CSV

    表  2  THz行波管测试结果

    Table  2.   THz TWT test results

    frequency/THzcathode voltage/kVbeam current/mAsaturated gain/dBpeak power/mW3 dB bandwidth/GHzduty cycle/%
    0.649.74.8222591510
    0.679.63.11771150.5
    0.8511.42.822391511
    1.0312.12.3202950.3
    下载: 导出CSV

    表  3  几种半导体材料的主要特性参数

    Table  3.   Main characteristic parameters of several semiconductor materials

    materialband gap
    width/eV
    electron
    mobility/
    (cm2·V−1·s−1
    saturated electron
    velocity/
    (107 cm·s−1
    breakdown field
    strength/
    (MV·cm·−1
    thermal
    conductivity/
    (W·cm−1·K−1
    relative
    permittivity
    Baliga value
    (high frequency)
    Baliga value
    (low frequency)
    Si1.121 40010.31.511.411
    GaAs1.428 50020.40.513.11116
    4H-SiC3.251 020234.99.773600
    GaN3.451 000(GaN)
    2 000(AlGaN/GaN)
    2.73.328.91801 450
    下载: 导出CSV
  • [1] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7. (Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7
    [2] 董坤. 回旋行波管电子光学系统及高频结构研究[D]. 成都: 电子科技大学, 2017.

    Dong Kun. Research on electron optical system and high frequency structure of gyrotron travelling wave tubes[D]. Chengdu: University of Electronic Science and Technology, 2017
    [3] 李卓成. 国外空间行波管放大器现状与发展[J]. 空间电子技术, 2012(4):28-34. (Li Zhuocheng. The current status and developmental trends of space travelling wave tube amplifier[J]. Space Electronic Technology, 2012(4): 28-34
    [4] 郝保良, 魏义学, 陈永利, 等. 微波功率行波管器件的发展和应用[J]. 真空电子技术, 2018(1):10-18. (Hao Baoliang, Wei Yixue, Chen Yongli, et al. Development and application of microwave power traveling wave tubes[J]. Vacuum Electronics, 2018(1): 10-18
    [5] 周碎明, 郝保良. 行波管有源组阵技术[J]. 真空电子技术, 2018(3):67-74. (Zhou Suiming, Hao Baoliang. Active electronically scanned array based on mini-TWT[J]. Vacuum Electronics, 2018(3): 67-74
    [6] 廖复疆, 蔡军, 陈波, 等. 发展新一代真空电子器件[J]. 真空电子技术, 2016(6):31-35. (Liao Fujiang, Cai Jun, Chen Bo, et al. Development of a new generation of vacuum electron devices[J]. Vacuum Electronics, 2016(6): 31-35
    [7] 王自成, 唐伯俊, 李海强, 等. 双排矩形波导慢波结构W波段行波管[J]. 强激光与粒子束, 2018, 30:053008. (Wang Zicheng, Tang Bojun, Li Haiqiang, et al. W band traveling wave tube based on staggered double rectangular waveguide structure[J]. High Power Laser and Particle Beams, 2018, 30: 053008 doi: 10.11884/HPLPB201830.170445
    [8] 胡银富, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4):350-360. (Hu Yinfu, Feng Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350-360
    [9] 李力, 瞿波, 尚艳华, 等. Q/V波段空间行波管及应用[J]. 真空电子技术, 2014(3):41-43. (Li Li, Qu Bo, Shang Yanhua, et al. Space TWT and its application in Q/V band[J]. Vacuum Electronics, 2014(3): 41-43 doi: 10.3969/j.issn.1002-8935.2014.03.011
    [10] Yi Hongxia, Xiao Liu, Liu Pukun, et al. Optimization design of slow wave structure using generic algorithm[C]//International Vacuum Electronics Conference. 2011.
    [11] Lohmeyer W Q, Aniceto R J, Cahoy K L. Communication satellite power amplifiers: Current and future SSPA and TWTA technologies[J]. International Journal of Satellite Communications and Networking, 2016, 34: 95-113. doi: 10.1002/sat.1098
    [12] 李建兵, 郭盼盼, 王永康, 等. 小型化行波管放大器热仿真分析及优化设计[J]. 强激光与粒子束, 2019, 31:113004. (Li Jianbing, Guo Panpan, Wang Yongkang, et al. Thermal simulation analysis and optimization design of miniaturized traveling wave tube amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 113004 doi: 10.11884/HPLPB201931.190145
    [13] 崔鹏. AlGaN/GaN异质结场效应晶体管载流子迁移率和相关器件特性参数研究[D]. 济南: 山东大学, 2018.

    Cui Peng. Studies of carrier mobility and related device paramaters in AlGaN/GaN heterostructure field-effect transistors[D]. Ji'nan: Shandong University, 2018
    [14] 周守利, 陈瑞涛, 周赡成, 等. X~Ku波段宽带驱动放大器设计[J]. 强激光与粒子束, 2019, 31:033002. (Zhou Shouli, Chen Ruitao, Zhou Zhancheng, et al. Design of X~Ku band broadband driver amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 033002 doi: 10.11884/HPLPB201931.180342
    [15] 喻先卫, 王仁军, 韩煦, 等. Ku波段宽带GaN固态功率放大器[J]. 固体电子学研究与进展, 2018, 38(3):173-177. (Yu Xianwei, Wang Renjun, Han Xu, et al. A Ku-band wideband GaN solid-state power amplifier[J]. Research & Progress of SSE, 2018, 38(3): 173-177
    [16] 周守利, 张景乐, 吴建敏, 等. Ku波段微波单片集成电路6位数字衰减器设计[J]. 强激光与粒子束, 2019, 31:123004. (Zhou Shouli, Zhang Jingle, Wu Jianmin, et al. Design of Ku band 6 bit digital attenuator of microwave monolithic integrated circuit[J]. High Power Laser and Particle Beams, 2019, 31: 123004 doi: 10.11884/HPLPB201931.190049
    [17] Chen Zhikai, Xu Yuehang, Wang Changsi, et al. Design of Ku-band GaN HEMT power amplifier based on multi-bias statistical model[J]. International Journal of Numerical Modelling, 2017: e2130.
    [18] 李国熠, 滑育楠, 邬海峰. 高功率微波GaN器件研究现状与发展趋势[J]. 电子世界, 2018(10):89-90. (Li Guoyi, Hua Yu'nan, Wu Haifeng. Research status and development trend of high power microwave GaN devices[J]. Electronics World, 2018(10): 89-90
    [19] 李建兵. 微波功率模块集成电源关键技术研究[D]. 郑州: 信息工程大学, 2006.

    Li Jianbing. Research on the key technologies of the integrated power supply of MPM[D]. Zhengzhou: PLA Information Engineering University, 2006
    [20] 强伯涵, 魏智. 现代雷达发射机的理论设计和实践[M]. 北京: 国防工业出版社, 1985.

    Qiang Bohan, Wei Zhi. Theoretical design and practice of modern radar transmitter[M]. Beijing: National Defence Industry Press, 1985
    [21] 刘漾, 廖明亮, 刘国亮, 等. 国外微波功率模块现状与发展[J]. 电子信息对抗技术, 2016, 31(1):70-73. (Liu Yang, Liao Mingliang, Liu Guoliang, et al. The art state of the abroad microwave power module[J]. Electronic Information Warfare Technology, 2016, 31(1): 70-73 doi: 10.3969/j.issn.1674-2230.2016.01.015
    [22] 谢青梅, 陈辑, 字张雄, 等. W波段微波功率模块的研制[J]. 微波学报, 2018, 34(s2):334-336. (Xie Qingmei, Chen Ji, Zi Zhangxiong, et al. The art state of the abroad microwave power module[J]. Journal of Microwaves, 2018, 34(s2): 334-336
    [23] Trani P, Antoine P. MPM for ECM systems[C]//International Vacuum Electronics Conference. 2012: 149-150.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  3815
  • HTML全文浏览量:  850
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-06-15
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回