Overview of development of microwave power amplifiers
-
摘要:
微波功率放大器分为真空和固态两类,分别分析了两类器件的原理和特点,然后介绍了它们的发展历史、当前的技术研究状况和未来发展趋势。重点介绍了两种器件相结合的产物——微波功率模块,包括微波功率模块的产生过程和当前国内外的发展状况,并对未来的发展趋势进行了分析和预测。
Abstract:Microwave power amplifiers are divided into vacuum and solid devices. This paper analyzes the principles, advantages and disadvantages of these two types of devices, and then introduces their development history, current technical research status and future development trends. This paper mainly introduces the microwave power module as it is the combination of these two devices, including its evolution process and current development status both home and abroad, and analyzes and predictes its future development.
-
Key words:
- microwave power amplifier /
- vacuum device /
- solid state device /
- microwave power module
-
表 1 国内外典型毫米波产品
Table 1. Typical millimeter wave products
serial frequency/GHz power/W duty cycle/% efficiency/% manufacturer main application 1 231~235 5~25 50 11 L3 radar(SAR) 2 90.6~91.4 300 50 − L3 seeker,radar 93~95 50 CW 15 CPI radar communication W band(bandwidth 5 GHz) 150 20 20 CETC12 radar communication W band(bandwidth 0.5 GHz) 200 10 − THALES seeker,radar 3 81~86 200 CW 50 L3 communication 4 47~52.4 125 CW 35 L3 communication 47~52.4 120 CW 30 CETC12 communication 43.5~45.5 200 CW 46 L3 communication 5 34~36 1000 50 40 L3 seeker,radar 32~37 700 50 40 CETC12 radar 27.5~31 500 CW 57 L3/NEC/CPI communication 27.5~31 300 CW 45 CETC12 communication 表 2 THz行波管测试结果
Table 2. THz TWT test results
frequency/THz cathode voltage/kV beam current/mA saturated gain/dB peak power/mW 3 dB bandwidth/GHz duty cycle/% 0.64 9.7 4.8 22 259 15 10 0.67 9.6 3.1 17 71 15 0.5 0.85 11.4 2.8 22 39 15 11 1.03 12.1 2.3 20 29 5 0.3 表 3 几种半导体材料的主要特性参数
Table 3. Main characteristic parameters of several semiconductor materials
material band gap
width/eVelectron
mobility/
(cm2·V−1·s−1)saturated electron
velocity/
(107 cm·s−1)breakdown field
strength/
(MV·cm·−1)thermal
conductivity/
(W·cm−1·K−1)relative
permittivityBaliga value
(high frequency)Baliga value
(low frequency)Si 1.12 1 400 1 0.3 1.5 11.4 1 1 GaAs 1.42 8 500 2 0.4 0.5 13.1 11 16 4H-SiC 3.25 1 020 2 3 4.9 9.7 73 600 GaN 3.45 1 000(GaN)
2 000(AlGaN/GaN)2.7 3.3 2 8.9 180 1 450 -
[1] 王斌, 王风岩, 周旭, 等. 微波功率行波管及模块的应用发展趋势[J]. 真空电子技术, 2019(2):1-7. (Wang Bin, Wang Fengyan, Zhou Xu, et al. Application and development trend of TWTs and MPMs[J]. Vacuum Electronics, 2019(2): 1-7 [2] 董坤. 回旋行波管电子光学系统及高频结构研究[D]. 成都: 电子科技大学, 2017.Dong Kun. Research on electron optical system and high frequency structure of gyrotron travelling wave tubes[D]. Chengdu: University of Electronic Science and Technology, 2017 [3] 李卓成. 国外空间行波管放大器现状与发展[J]. 空间电子技术, 2012(4):28-34. (Li Zhuocheng. The current status and developmental trends of space travelling wave tube amplifier[J]. Space Electronic Technology, 2012(4): 28-34 [4] 郝保良, 魏义学, 陈永利, 等. 微波功率行波管器件的发展和应用[J]. 真空电子技术, 2018(1):10-18. (Hao Baoliang, Wei Yixue, Chen Yongli, et al. Development and application of microwave power traveling wave tubes[J]. Vacuum Electronics, 2018(1): 10-18 [5] 周碎明, 郝保良. 行波管有源组阵技术[J]. 真空电子技术, 2018(3):67-74. (Zhou Suiming, Hao Baoliang. Active electronically scanned array based on mini-TWT[J]. Vacuum Electronics, 2018(3): 67-74 [6] 廖复疆, 蔡军, 陈波, 等. 发展新一代真空电子器件[J]. 真空电子技术, 2016(6):31-35. (Liao Fujiang, Cai Jun, Chen Bo, et al. Development of a new generation of vacuum electron devices[J]. Vacuum Electronics, 2016(6): 31-35 [7] 王自成, 唐伯俊, 李海强, 等. 双排矩形波导慢波结构W波段行波管[J]. 强激光与粒子束, 2018, 30:053008. (Wang Zicheng, Tang Bojun, Li Haiqiang, et al. W band traveling wave tube based on staggered double rectangular waveguide structure[J]. High Power Laser and Particle Beams, 2018, 30: 053008 doi: 10.11884/HPLPB201830.170445 [8] 胡银富, 冯进军. 用于雷达的新型真空电子器件[J]. 雷达学报, 2016, 5(4):350-360. (Hu Yinfu, Feng Jinjun. New vacuum electronic devices for radar[J]. Journal of Radars, 2016, 5(4): 350-360 [9] 李力, 瞿波, 尚艳华, 等. Q/V波段空间行波管及应用[J]. 真空电子技术, 2014(3):41-43. (Li Li, Qu Bo, Shang Yanhua, et al. Space TWT and its application in Q/V band[J]. Vacuum Electronics, 2014(3): 41-43 doi: 10.3969/j.issn.1002-8935.2014.03.011 [10] Yi Hongxia, Xiao Liu, Liu Pukun, et al. Optimization design of slow wave structure using generic algorithm[C]//International Vacuum Electronics Conference. 2011. [11] Lohmeyer W Q, Aniceto R J, Cahoy K L. Communication satellite power amplifiers: Current and future SSPA and TWTA technologies[J]. International Journal of Satellite Communications and Networking, 2016, 34: 95-113. doi: 10.1002/sat.1098 [12] 李建兵, 郭盼盼, 王永康, 等. 小型化行波管放大器热仿真分析及优化设计[J]. 强激光与粒子束, 2019, 31:113004. (Li Jianbing, Guo Panpan, Wang Yongkang, et al. Thermal simulation analysis and optimization design of miniaturized traveling wave tube amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 113004 doi: 10.11884/HPLPB201931.190145 [13] 崔鹏. AlGaN/GaN异质结场效应晶体管载流子迁移率和相关器件特性参数研究[D]. 济南: 山东大学, 2018.Cui Peng. Studies of carrier mobility and related device paramaters in AlGaN/GaN heterostructure field-effect transistors[D]. Ji'nan: Shandong University, 2018 [14] 周守利, 陈瑞涛, 周赡成, 等. X~Ku波段宽带驱动放大器设计[J]. 强激光与粒子束, 2019, 31:033002. (Zhou Shouli, Chen Ruitao, Zhou Zhancheng, et al. Design of X~Ku band broadband driver amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 033002 doi: 10.11884/HPLPB201931.180342 [15] 喻先卫, 王仁军, 韩煦, 等. Ku波段宽带GaN固态功率放大器[J]. 固体电子学研究与进展, 2018, 38(3):173-177. (Yu Xianwei, Wang Renjun, Han Xu, et al. A Ku-band wideband GaN solid-state power amplifier[J]. Research & Progress of SSE, 2018, 38(3): 173-177 [16] 周守利, 张景乐, 吴建敏, 等. Ku波段微波单片集成电路6位数字衰减器设计[J]. 强激光与粒子束, 2019, 31:123004. (Zhou Shouli, Zhang Jingle, Wu Jianmin, et al. Design of Ku band 6 bit digital attenuator of microwave monolithic integrated circuit[J]. High Power Laser and Particle Beams, 2019, 31: 123004 doi: 10.11884/HPLPB201931.190049 [17] Chen Zhikai, Xu Yuehang, Wang Changsi, et al. Design of Ku-band GaN HEMT power amplifier based on multi-bias statistical model[J]. International Journal of Numerical Modelling, 2017: e2130. [18] 李国熠, 滑育楠, 邬海峰. 高功率微波GaN器件研究现状与发展趋势[J]. 电子世界, 2018(10):89-90. (Li Guoyi, Hua Yu'nan, Wu Haifeng. Research status and development trend of high power microwave GaN devices[J]. Electronics World, 2018(10): 89-90 [19] 李建兵. 微波功率模块集成电源关键技术研究[D]. 郑州: 信息工程大学, 2006.Li Jianbing. Research on the key technologies of the integrated power supply of MPM[D]. Zhengzhou: PLA Information Engineering University, 2006 [20] 强伯涵, 魏智. 现代雷达发射机的理论设计和实践[M]. 北京: 国防工业出版社, 1985.Qiang Bohan, Wei Zhi. Theoretical design and practice of modern radar transmitter[M]. Beijing: National Defence Industry Press, 1985 [21] 刘漾, 廖明亮, 刘国亮, 等. 国外微波功率模块现状与发展[J]. 电子信息对抗技术, 2016, 31(1):70-73. (Liu Yang, Liao Mingliang, Liu Guoliang, et al. The art state of the abroad microwave power module[J]. Electronic Information Warfare Technology, 2016, 31(1): 70-73 doi: 10.3969/j.issn.1674-2230.2016.01.015 [22] 谢青梅, 陈辑, 字张雄, 等. W波段微波功率模块的研制[J]. 微波学报, 2018, 34(s2):334-336. (Xie Qingmei, Chen Ji, Zi Zhangxiong, et al. The art state of the abroad microwave power module[J]. Journal of Microwaves, 2018, 34(s2): 334-336 [23] Trani P, Antoine P. MPM for ECM systems[C]//International Vacuum Electronics Conference. 2012: 149-150.