留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学炮塔气动载荷的非稳态特性

陈勇 路大举 谢伟明 姚向红 袁强 吴运刚

陈勇, 路大举, 谢伟明, 等. 光学炮塔气动载荷的非稳态特性[J]. 强激光与粒子束, 2020, 32: 081001. doi: 10.11884/HPLPB202032.200113
引用本文: 陈勇, 路大举, 谢伟明, 等. 光学炮塔气动载荷的非稳态特性[J]. 强激光与粒子束, 2020, 32: 081001. doi: 10.11884/HPLPB202032.200113
Chen Yong, Lu Daju, Xie Weiming, et al. Unsteady characteristics of aerodynamic loads on a turret[J]. High Power Laser and Particle Beams, 2020, 32: 081001. doi: 10.11884/HPLPB202032.200113
Citation: Chen Yong, Lu Daju, Xie Weiming, et al. Unsteady characteristics of aerodynamic loads on a turret[J]. High Power Laser and Particle Beams, 2020, 32: 081001. doi: 10.11884/HPLPB202032.200113

光学炮塔气动载荷的非稳态特性

doi: 10.11884/HPLPB202032.200113
详细信息
    作者简介:

    陈 勇(1975—),男,博士,副研究员,从事气动光学、湍流与CFD等方面研究;cardcchy@sina.com

  • 中图分类号: O355;TN241

Unsteady characteristics of aerodynamic loads on a turret

  • 摘要: 采用耦合J-B模型的IDDES模型与双时间步LU-SGS方法开展炮塔非稳态气动载荷的数值仿真研究。炮塔流动会发生分离,天顶位置的分离角大于90°;当流动绕过炮塔时,形成马蹄涡、脱落涡街等非稳态流场结构,导致气动载荷也具有非稳态特性;炮塔顶点的脉动静压功率谱在1.6~40.0 kHz进入各向同性均匀湍流的惯性子区,基本满足Kolmogrov的−5/3定律;气动力以阻力为主,横向力的脉动幅值大,气动力矩则以俯仰力矩为主,滚转力矩的脉动幅值大,偏航力矩可以忽略不计;气动力和力矩的功率谱主要集中在1 kHz以下,存在多个尖峰频率,主频约为230 Hz(斯特劳哈尔数为0.15)。在ATP系统设计之初,需要考虑光学炮塔所受气动载荷的非稳态特性,并规避尖峰频率尤其是主频的谐振破坏问题。
  • 图  1  光学炮塔模型与尺寸

    Figure  1.  An optical turret and its size

    图  2  近壁流线分布

    Figure  2.  Streamlines near the wall

    图  3  λ2特征值等值面(λ2=−0.4)

    Figure  3.  Iso-surface of λ2 eigenvalue(λ2=−0.4)

    图  4  参考点B的静压功率谱分布

    Figure  4.  Power spectrum density of static pressure at point B

    图  5  气动力

    Figure  5.  Aerodynamic forces

    图  6  气动力矩

    Figure  6.  Aerodynamic moments

  • [1] 关奇, 杜太焦, 陈志华, 等. 亚声速球/柱尾流对激光传输影响的数值模拟[J]. 红外与激光工程, 2017, 46:0906005. (Guan Qi, Du Taijiao, Chen Zhihua, et al. Numerical simulation of laser propagation effects through subsonic hemispherical/cylindrical wake[J]. Infrared and Laser Engineering, 2017, 46: 0906005 doi: 10.3788/IRLA201746.0906005
    [2] 董航, 徐明. 转塔气动光学效应时空特性[J]. 光学学报, 2018, 38:1001002. (Dong Hang, Xu Ming. Space-time characteristics of the aero-optical effect around a turret[J]. Acta Optica Sinica, 2018, 38: 1001002 doi: 10.3788/AOS201838.1001002
    [3] Gordeyev S, Jumper E. Fluid dynamics and aero-optics of turrets[J]. Progress in Aerospace Sciences, 2010, 46: 388-400. doi: 10.1016/j.paerosci.2010.06.001
    [4] Mathews E, Wang K, Wang M, et al. LES analysis of hemisphere-on-cylinder turret aero-optics[C]//52nd Aerospace Sciences Meeting. 2014.
    [5] Arad E, Weidenfeld M. Aero-optic calculations of a spherical turret at transonic flow[C]//55th AIAA Aerospace Sciences Meeting. 2017.
    [6] Reynolds T, Saunders D, Presdorf T, et al. Effect of geometric modifications on the flow field of a turret[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012.
    [7] Morgan P E, Visbal M R. Numerical simulations investigating control of flow over a turret[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2009.
    [8] Mathews E, Wang K, Wang M, et al. Numerical investigation of aero-optical distortions over a hemisphere-on-cylinder turret with gaps[C]//46th AIAA Plasmadynamics and Lasers Conference. 2015.
    [9] 张露, 李杰. 基于RANS/LES方法的超声速底部流场数值模拟[J]. 航空学报, 2017, 38:120102. (Zang Lu, Li Jie. Numerical simulations of supersonic base flow field based on RANS/LES approaches[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38: 120102
    [10] Hu J, Xuan H B, Kwok K C S, et al. Study of wind flow over a 6 m cube using improved delayed detached eddy simulation[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 179: 463-474.
    [11] Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[J]. Advances in DNS/LES, 1997: 137-148.
    [12] Spalart P R, Deck S, Shur M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20: 181-195. doi: 10.1007/s00162-006-0015-0
    [13] Shur M L, Spalart P R, Strelets M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29: 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [14] Jin G, Braza M. Two-equation turbulence model for unsteady separated flows around airfoils[J]. Journal of American Institute of Aeronautics and Astronautics, 1994, 32(11): 2316-2320. doi: 10.2514/3.12292
    [15] Menter F R, Sunnyvale E I. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//24th Fluid Dynamics Conference. 1993.
    [16] Jameson A, Yoonf S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. Journal of American Institute of Aeronautics and Astronautics, 1987, 25(7): 929-935. doi: 10.2514/3.9724
  • 加载中
图(6)
计量
  • 文章访问数:  1022
  • HTML全文浏览量:  187
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-08-05
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回