Experimental research on high-pressure loading technology of multiple thermodynamic paths on 10 kJ-level laser facility
-
摘要: 针对极端高压条件物质特性研究需求,在我国万焦耳激光装置上利用其高能量、高功率、任意整形长脉冲输出的技术优势先后开展了冲击压缩、准等熵压缩以及“预冲击准等熵压缩”复合热力学路径压缩等多种热力学路径的高压加载技术研究,建立了实用的高压加载设计方法,重点优化了高压加载源的平面性和干净性,发展了高压状态精密表征技术,实现了1011 Pa以上准等熵,1012 Pa以上冲击以及两种路径之间的宽区高压加载状态能力,为激光装置上的高压状态方程及相变动力学研究提供了重要的技术基础。Abstract: In order to carry out scientific research on the properties of materials under extremely high pressure conditions, a series of laser-driven high pressure loading technology based on Hügoniot, quasi-isentropic compression and “shock+quasi-isentropic” composite thermodynamic path compression have been developed on 10 kJ-level laser facility. The practical high-pressure loading design method has been established and optimization research on planarity, cleanness of compression wave has been performed. High-pressure state generation capability in wide parameter area which covers from above 1011 Pa of quasi-isentropic compression to above 1012 Pa of Hügoniot compression has been implemented, which provides an important technical foundation for the study of the high-pressure state equation and phase transition dynamics on the laser device.
-
图 1 激光装置上三种典型热力学路径高压加载路线的示意图:(a)冲击压缩路径;(b)准等熵压缩路径;(c)预冲击准等熵压缩路径
Figure 1. Schematic diagram of high-pressure loading routes based on three typical thermodynamic paths on the laser facility:(a)shock compression path;(b)quasi-isentropic compression path;(c)“shock+quasi-isentropic” composite thermodynamic path
图 6 基于辐射流体程序的非稳冲击加载技术分析[23]
Figure 6. Analysis of unsteady shock loading technology based on the radiation hydrodynamic simulation
图 9 激光驱动铝准等熵压缩实验[34]
Figure 9. Laser-driven quasi-isentropic compression experiment of Aluminum
-
Davidson R C. Frontiers in high energy density physics: The X-games of contemporary science[M]. Washington: The National Academies Press, 2002. Remington B A. High energy density laboratory astrophysics[J]. Plasma Physics and Controlled Fusion, 2005, 47: A191-A203. doi: 10.1088/0741-3335/47/5A/014 Remington B A, Rudd R E, Wark J S, et al. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation[J]. Physics of Plasmas, 2015, 22: 090501. doi: 10.1063/1.4930134 Veeser L R, Solem J C. Studies of laser-driven shock-waves in Aluminum[J]. Physical Review Letters, 1978, 40(21): 1391-1394. doi: 10.1103/PhysRevLett.40.1391 Cottet F, Hallouin M, Romain J P, et al. Enhancement of a laser-driven shock-wave up to 10 TPa by the impedance-match technique[J]. Applied Physics Letters, 1985, 47(7): 678-680. doi: 10.1063/1.96055 Cauble R, Phillion D W, Hoover T J, et al. Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils[J]. Physical Review Letters, 1993, 70(14): 2102-2105. doi: 10.1103/PhysRevLett.70.2102 Rothman S D, Evans A M, Horsfield C J, et al. Impedance match equation of state experiments using indirectly laser-driven multimegabar shocks[J]. Physics of Plasmas, 2002, 9(5): 1721-1733. doi: 10.1063/1.1465419 Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Physical Review B, 2009, 79: 014112. doi: 10.1103/PhysRevB.79.014112 Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005, 12: 082702. doi: 10.1063/1.2009528 Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 2010, 6(1): 40-43. doi: 10.1038/nphys1438 Batani D, Morelli A, Tomasini M, et al. Equation of state data for iron at pressures beyond 10 Mbar[J]. Physical Review Letters, 2002, 88: 235502. doi: 10.1103/PhysRevLett.88.235502 Batani D, Balducci A, Beretta D, et al. Equation of state data for gold in the pressure range < 0 TPa[J]. Physical Review B, 2000, 61(14): 9287-9294. doi: 10.1103/PhysRevB.61.9287 Duffy T S. Ramp compression of iron and magnesium oxide to 2.5 Mbar at the Omega laser facility[R]. DOE/SSAA Symposium, 2012. Park H, Remington B A, Braun D, et al. Quasi-isentropic material property studies at extreme pressures: from Omega to NIF[J]. Journal of Physics: Conference Series, 2008, 112: 042024. doi: 10.1088/1742-6596/112/4/042024 Barker L M. High pressure quasi-isentropic impact experiments[R]. Santa Fe: Sandia National Laboratories. 1984. Barker L M, Scott D D. Development of a high-pressure quasi-isentropic plane wave generating capability[R]. SAND84-0432: 1-50. Chhabildas L C, Asay J R, Barker L M. Relationship of fragment size to normalized spall strength for materials[R]. SAND 88-0306. Chhabildas L C, Asay J R, Barker L M. Dynamic quasi-isentropic loading of tungsten[R]. SAND89-0975C. Xiong H, Zhang L, Chen L, et al. Design and fabrication of W-Mo-Ti-TiAl-Al system functionally graded material[J]. Metallurgical and Materials Transactions A, 2000, 31: 2369-2376. doi: 10.1007/s11661-000-0152-9 柏劲松, 沈强, 唐蜜, 等. W-Mo-Ti-Mg体系阻抗梯度飞片无冲击驱动过程数值分析[J]. 振动与冲击, 2010, 29(6):72-75. (Bai Jingsong, Shen Qiang, Tang Mi, et al. Computational of the W-Mo-Ti-Mg graded impedance impactor complexity loadings and shockless compressions[J]. Journal of Vibration & Shock, 2010, 29(6): 72-75 doi: 10.3969/j.issn.1000-3835.2010.06.018 Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014, 511(7509): 330-333. doi: 10.1038/nature13526 Fu S Z, Huang X G, Ma M X, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hügoniot data of Cu up to similar to 2.24 TPa with high precision[J]. Journal of Applied Physics, 2007, 191: 043517. Liu W, Dan X X, Jiang S E, et al. Laser-driven shock compression of gold foam in the terapascal pressure range[J]. Physics of Plasmas, 2018, 25: 062707. doi: 10.1063/1.5026623 Xue Q X, Wang Z B, Jiang S E, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014, 21: 072709. doi: 10.1063/1.4890851 Duan Xiaoxi, Zhang Chen, Guan Zanyang, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading [J]. Journal of Applied Physics, 2020, 128:015902. Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025 王哲斌, 杨冬, 张惠鸽, 等. 光学条纹相机时间扫描性能应用研究[J]. 强激光与粒子束, 2012, 24(8):1836-1840. (Wang Zhebin, Yang Dong, Zhang Huige, et al. Sweep time performance of optic streak camera[J]. High Power Laser and Particle Beams, 2012, 24(8): 1836-1840 doi: 10.3788/HPLPB20122408.1836 王哲斌, 蒋小华, 李三伟, 等. 辐射驱动冲击波速度被动式诊断技术研究[J]. 强激光与粒子束, 2013, 25(2):375-380. (Wang Zhebin, Jiang Xiaohua, Li Sanwei, et al. Passive measurement of radiation driven shock velocity[J]. High Power Laser and Particle Beams, 2013, 25(2): 375-380 doi: 10.3788/HPLPB20132502.0375 Zhang C, Wang, Z B, Zhao B, et al. Investigation of radiation flux in certain band via the preheat of aluminum sample[J]. Physics of Plasmas, 2013, 20: 122706. doi: 10.1063/1.4844015 Zhang C, Liu H, Duan X X, et al. Study of M-band X-ray preheating effect on shock propagation via streaked optical pyrometer system at SG-III prototype lasers[J]. Physics of Plasmas, 2019, 26: 012708. doi: 10.1063/1.5054990 Zhang H, Duan X X, Zhang C, et al. Analysis of the intrinsic uncertainties in the laser-driven iron Hügoniot experiment based on the measurement of velocities[J]. Chinese Physics Letters, 2016, 33: 086202. doi: 10.1088/0256-307X/33/8/086202 薛全喜, 王哲斌, 江少恩, 等. 整形激光加载的一维准等熵压缩仿真[J]. 强激光与粒子束, 2013, 25(11):2891-2894. (Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Simulation of one-dimensional quasi-isentropic compression driven by temporal shaped laser[J]. High Power Laser and Particle Beams, 2013, 25(11): 2891-2894 doi: 10.3788/HPLPB20132511.2891 Ng A, Pasini D, Celliers P, et al. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption[J]. Applied Physics Letters, 1984, 45(10): 1046-1050. doi: 10.1063/1.95057 薛全喜, 江少恩, 王哲斌, 等. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展[J]. 物理学报, 2018, 67:045202. (Xue Quanxi, Jiang Shaoen, Wang Zhebin, et al. Progress of laser-driven quasi-isentropic compression study performed on SHENGUANG III prototype laser facility[J]. Acta Physica Sinica, 2018, 67: 045202 doi: 10.7498/aps.67.20172159 Xue Q X, Jiang S E, Wang Z B, et al. X-ray preheat shield in laser direct-drive ramp compression experiments[J]. AIP Advances, 2019, 9: 035007. doi: 10.1063/1.5053226