留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用单开关谐振电路的脉冲电源设计

饶俊峰 吴改生 王永刚 姜松 李孜

饶俊峰, 吴改生, 王永刚, 等. 采用单开关谐振电路的脉冲电源设计[J]. 强激光与粒子束, 2020, 32: 085001. doi: 10.11884/HPLPB202032.200163
引用本文: 饶俊峰, 吴改生, 王永刚, 等. 采用单开关谐振电路的脉冲电源设计[J]. 强激光与粒子束, 2020, 32: 085001. doi: 10.11884/HPLPB202032.200163
Rao Junfeng, Wu Gaisheng, Wang Yonggang, et al. Design of pulsed power supply using single switch resonant circuit[J]. High Power Laser and Particle Beams, 2020, 32: 085001. doi: 10.11884/HPLPB202032.200163
Citation: Rao Junfeng, Wu Gaisheng, Wang Yonggang, et al. Design of pulsed power supply using single switch resonant circuit[J]. High Power Laser and Particle Beams, 2020, 32: 085001. doi: 10.11884/HPLPB202032.200163

采用单开关谐振电路的脉冲电源设计

doi: 10.11884/HPLPB202032.200163
基金项目: 国家自然科学基金青年基金项目(51707122);国家重点研发计划数字诊疗专项(2019YFC0119100);上海市青年科技英才扬帆计划项目(20YF1431100)
详细信息
    作者简介:

    饶俊峰(1985-),男,博士,副教授,主要从事全固态高压脉冲发生器和低温等离子体应用等方面的研究工作;jfrao@usst.edu.cn

    通讯作者:

    王永刚(1989-),男,博士,讲师,主要从事脉冲功率技术和低温等离子体应用等方面的研究工作;fduwangyg@163.com

  • 中图分类号: TM832

Design of pulsed power supply using single switch resonant circuit

  • 摘要: 谐振电路可以实现软开关,减小开关损耗,而广泛应用于电力电子领域。谐振电路工作在特定模式下可以产生脉冲形式电压,相较于其他脉冲发生器拓扑具有开关数量少、低开关损耗和低电磁干扰(EMI)的优点。谐振电路通常需要半桥或全桥转换器产生一个方波激励,本文提出了一种结合脉冲变压器和单开关谐振电路的脉冲电路,主电路只需使用一个半导体开关,便可通过谐振电路和脉冲变压器在副边得到高压脉冲,且可以实现零电流关断(ZCS)。对电路的工作过程进行了理论分析,并搭建了样机进行了带载实验。试验结果表明,在介质阻挡放电(DBD)负载上实现了频率为10~20 kHz、幅值为5~10 kV的正弦脉冲电压。该电路结构简单,成本低,安全可靠。
  • 图  1  正弦脉冲电路的一般框图

    Figure  1.  General block diagram of sinusoidal pulse circuit

    图  2  单开关正弦脉冲拓扑

    Figure  2.  Single-switch of sinusoidal pulse topology

    图  3  电路的部分关键波形

    Figure  3.  Some key waveforms of the circuit

    图  4  四个工作阶段的电流路径

    Figure  4.  Current path at each working stage

    图  5  输出电压与谐振电感电流波形

    Figure  5.  Waveforms of output voltage and resonant inductor current

    图  6  主电路的等效电路

    Figure  6.  Equivalent circuit of the main circuit

    图  7  电感电流不为零的P1阶段的等效电路

    Figure  7.  Equivalent circuit in period1 (P1)

    图  8  电感电流为零的P2阶段的等效电路

    Figure  8.  Equivalent circuit in period2 (P2)

    图  9  不同频率下的输出电压的仿真波形

    Figure  9.  Simulation waveforms of output voltage at different frequencies

    图  10  ${u}_{{C}_{{\rm{r}}}}$的初始系数与电路过冲比的关系图

    Figure  10.  Initial coefficient of ${u}_{{C}_{{\rm{r}}}}$ and circuit overshoot ratio

    图  11  开关两端的电压波形

    Figure  11.  Waveforms voltage across the switch

    图  12  加有缓冲电路的主电路

    Figure  12.  Main circuit with a snubber circuit

    图  13  软开关波形图

    Figure  13.  Soft switching waveforms

    图  14  不同频率下的谐振电容电压${u}_{{C}_{{\rm{r}}}}$波形

    Figure  14.  Waveforms of ${u}_{{C}_{{\rm{r}}}}$ at different frequencies

    图  15  不同频率下的输出电压${V}_{{\rm{o}}}$波形

    Figure  15.  Waveforms of ${V}_{{\rm{o}}}$ at different frequencies

    图  16  不同频率下的谐振电感中的电流$ {i}_{{L}_{r}} $波形

    Figure  16.  Waveforms of ${i}_{{L}_{{\rm{r}}}}$at different frequencies

    图  17  不同频率下的计算与实验的电路过冲比

    Figure  17.  Calculated and experimental circuit overshoot ratio at different frequencies

    图  18  DBD负载的电压电流波形

    Figure  18.  Voltage and current waveforms of DBD load

    图  19  放电实物图

    Figure  19.  A picture of the dielectric barrier discharge (DBD) load in discharging process

    表  1  不同频率下的$ K $${V}_{\rm{C}_{r},pk}$的理论值与实验值对比

    Table  1.   Comparison of theoretical and experimental values of $ K $ and ${V}_{\rm{C}_{r},pk}$ at different frequencies

    ${f_{\rm{s}}}$/kHz${u_{ {C_{\rm{r}}},0} }/V$aK${V_{ {C_{\rm{r}}},{\rm{pk}}} }/V$
    exp.theo.exp.theodifference
    5 6.16 0.30 1.60 1.64 32.0 32.8 2.5%
    10 −6.40 −0.32 2.13 2.20 42.6 44.0 3.2%
    15 −14.4 −0.72 2.49 2.60 49.4 52.0 4.2%
    20 −26.4 −1.32 2.99 3.08 60.0 61.6 2.6%
    下载: 导出CSV
  • [1] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017(20):7-15. (Dai Dong, Ning Wenjun, Shao Tao. Research status and development trend of atmospheric pressure low temperature plasma[J]. Transactions of China Electrotechnical Society, 2017(20): 7-15
    [2] Laroussi M. Low-temperature plasma jet for biomedical applications: A review[J]. IEEE Trans Plasma Science, 2015, 43(3): 703-712. doi: 10.1109/TPS.2015.2403307
    [3] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6):1416-1425. (Lu Xinpei. Plasma jet and its medical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425
    [4] 张晓星, 肖焓艳, 黄杨珏. 低温等离子体处理SF<sub>6</sub>废气综述[J]. 电工技术学报, 2016, 31(24):17-24. (Zhang Xiaoxing, Xiao Hanyan, Huang Yangjue. Review of SF<sub>6</sub> exhaust gas treatment by low temperature plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 17-24
    [5] 李文耀, 王瑞雪, 章程, 等. 大气压弥散放电辅助Cu表面类SiO<sub>2</sub>薄膜沉积[J]. 中国电机工程学报, 2016, 36(24):6736-6742. (Li Wenyao, Wang Ruixue, Zhang Cheng, et al. Atmospheric diffusion discharge assisted Cu surface SiO<sub>2</sub> film deposition[J]. Proceedings of the CSEE, 2016, 36(24): 6736-6742
    [6] Bonnin X, Brandelero J, Videau N, et al. A high voltage high frequency resonant inverter for supplying DBD devices with short discharge current pulses[J]. IEEE Trans Power Electronics, 2014, 29(8): 4261-4269. doi: 10.1109/TPEL.2013.2295525
    [7] Jiang H, Shao T, Zhang C, et al. Comparison of AC and nanosecond-pulsed DBDs in atmospheric air[J]. IEEE Trans Plasma Science, 2011, 39(11): 2076-2077. doi: 10.1109/TPS.2011.2146280
    [8] Hao S, Li W, Gu X, et al. Improved surface modification of polymer films by energy-compressed dielectric barrier discharge with discharge-time-regulated power source[J]. IEEE Trans Plasma Science, 2017, 45(1): 60-67. doi: 10.1109/TPS.2016.2631902
    [9] 东冲. 线型脉冲调制器理论基础与专用电路[M]. 北京: 国防工业出版社, 1978.

    Dong Chong. Theoretical basis and special circuit of linear pulse modulator[M]. Beijing: National Defense Industry Press, 1978
    [10] Zhou Y, Zhou Z, Yao C, et al. Fast-rise-time trigger source based on solid-state switch and pulse transformer for triggered vacuum switch[J]. IEEE Trans Dielectrics & Electrical Insulation, 2017, 24(4): 2105-2114.
    [11] Kim J H, Ryu M H, Min B D, et al. High voltage pulse power implementation using IGBT stacks[C]//IEEE Annual Power Electronics Specialists Conference. 2006.
    [12] Jiang W, Tokuchi A. Repetitive linear transformer driver using power MOSFET[J]. IEEE Trans Plasma Science, 2012, 40(10): 2625-2628. doi: 10.1109/TPS.2012.2200048
    [13] Redondo L M, Silva J F. Flyback versus forward switching power supply topologies for unipolar pulsed-power applications[J]. IEEE Trans Plasma Science, 2009, 37(1): 171-178. doi: 10.1109/TPS.2008.2006056
    [14] Florez D, Diez R, Piquet H. DCM-operated series-resonant inverter for the supply of DBD excimer lamps[J]. IEEE Trans Industry Applications, 2014, 50(1): 86-93. doi: 10.1109/TIA.2013.2271216
    [15] Meisser M, Kling R, Heering W. Universal resonant topology for high frequency pulsed operation of dielectric barrier discharge light sources[C]//Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition. 2011: 1180-1187.
    [16] Rueda V, Diop A, Diez R, et al. Series resonant inverter efficiency improvement with valley switching for dielectric barrier discharges[C]// IEEE 13th International Conference on Power Electronics and Drive Systems. 2019.
    [17] Meisser M, Kling R, HeeringW, et al. Universal resonant topology for high frequency pulsed operation of dielectric barrier discharge light source[C]//2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). 2011:1180-1187.
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1653
  • HTML全文浏览量:  260
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-07-30
  • 刊出日期:  2020-08-13

目录

    /

    返回文章
    返回