留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三腔整管RKA相位的理论与模拟的比较分析

何琥 戈弋 袁欢 黄华

何琥, 戈弋, 袁欢, 等. 三腔整管RKA相位的理论与模拟的比较分析[J]. 强激光与粒子束, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171
引用本文: 何琥, 戈弋, 袁欢, 等. 三腔整管RKA相位的理论与模拟的比较分析[J]. 强激光与粒子束, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171
He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171
Citation: He Hu, Ge Yi, Yuan Huan, et al. A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons[J]. High Power Laser and Particle Beams, 2020, 32: 103010. doi: 10.11884/HPLPB202032.200171

三腔整管RKA相位的理论与模拟的比较分析

doi: 10.11884/HPLPB202032.200171
基金项目: 国家自然科学基金项目(11605191,11475158);中物院科学技术发展基金项目(2015B0402096)
详细信息
    作者简介:

    何 琥(1974—),男,博士,副研究员,从事高功率微波研究;783803749@qq.com

  • 中图分类号: TN62

A comparison of phase between a nonlinear theory and 2D particle in cell simulation in three-cavity klystrons

  • 摘要: 首先采用运动学理论和空间电荷波理论推出了计算中间腔间隙入口处调制电流相位的经验公式。采用调制电子束激励中间腔的非线性理论估算中间腔和输出腔间隙电压的幅度和相位,并提出了估算输出腔间隙入口处调制电流相位的经验公式。采用这些理论和二维粒子模拟比较了中间腔和输出腔间隙入口处调制电流相位、中间腔和输出腔间隙电压相位。中间腔和输出间隙入口处调制电流相位误差为2.627°(模型1)和3.857°(模型2)。中间腔间隙电压幅度的相对误差是1.47%,输出腔幅度的相对误差是5.42%,中间腔相位的误差是4.017°(模型2)和5.427°(模型3),输出腔的相位的误差是12.32°。最后根据二维粒子模拟得出了三种模型调制电流的相位与距离的关系。相关理论计算结果与2D的PIC模拟结果进行了比对,验证了理论估算结果的可信度。
  • 图  1  栅网间隙示意图和输入腔r-z剖面图

    Figure  1.  Schematic diagram showing the gap of the conducting grid and the r-z section structure of the input cavity

    图  2  输入腔r-z剖面图

    Figure  2.  The r-z section structure of the input cavity

    图  3  输入腔和中间腔r-z剖面图

    Figure  3.  The r-z section structure of the input cavity and the middle cavity

    图  4  三腔整管RKA的r-z剖面图

    Figure  4.  The r-z section structure of the S-band RKA

    图  5  调制电流的相位与距离的关系

    Figure  5.  Phase of the modulation beam current vs propagation distance

  • [1] Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1994, 64(7): 3353-3379.
    [2] Uhm H S. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifier[J]. Phys Fluids B, 1993, 5(1): 190-200. doi: 10.1063/1.860852
    [3] Uhm H S, Park G S, Armstrong C M. A theory of cavity excitation by modulated electron beam in connection with application to a klystron amplifier[J]. Phys Fluids B, 1993, 5(4): 1349-1357. doi: 10.1063/1.860924
    [4] Uhm H S. Nonlinear mode evolution of current modulation in relativistic klystron amplifiers[C]//Proc of SPIE. 1993, 1872: 35-46.
    [5] Uhm H S. A theoretical analysis of relativistic klystron oscillators[J]. IEEE Trans Plasma Sci, 1994, 22(5): 706-712. doi: 10.1109/27.338286
    [6] Brandt H E. Current modulation in relativistic klystron amplifiers[J]. IEEE Trans Plasma Sci, 1996, 24(3): 924-927. doi: 10.1109/27.533096
    [7] Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [8] Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [9] Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band long pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2018, 66(1): 722-728.
    [10] 杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究[J]. 物理学报, 2009, 58(9):6141-6145. (Yang Zhenping, Bian Qingquan. Investigation of RF phase jitter in relativistic klystron amplifier[J]. Acta Physica Sinica, 2009, 58(9): 6141-6145
    [11] 何琥, 黄华, 雷禄容. 相对论速调管放大器一维非线性理论的数值分析[J]. 强激光与粒子束, 2014, 26:063005. (He Hu, Huang Hua, Lei Lurong. A self-consistent nonlinear theory of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2014, 26: 063005 doi: 10.3788/HPLPB20142606.63005
    [12] 何琥, 黄华, 雷禄容. 相对论速调管放大器中自洽的非线性理论与粒子模拟的比较[J]. 强激光与粒子束, 2016, 28:113006. (He Hu, Huang Hua, Lei Lurong. Comparison between self-consistent nonlinear theory and particle simulation of current modulation in relativistic klystron amplifiers[J]. High Power Laser and Particle Beams, 2016, 28: 113006 doi: 10.11884/HPLPB201628.160165
    [13] 何琥, 袁欢, 黄华. 相对论速调管放大器两腔束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2018, 30:053009. (He Hu, Yuan Huan, Huang Hua. A comparison between a self-consistent nonlinear theory of current modulation and 2D particle in cell simulation in two-cavity RKA[J]. High Power Laser and Particle Beams, 2018, 30: 053009 doi: 10.11884/HPLPB201830.170375
    [14] 何琥, 刘振帮, 黄华. 多注RKA束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2019, 31:013001. (He Hu, Liu Zhenbang, Huang Hua. Comparison between self-consistent nonlinear theory of current modulation and three-dimensional particle-in-cell simulation in multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 013001 doi: 10.11884/HPLPB201931.180095
    [15] 吴洋. 强流高增益相对论速调管放大器理论和实验研究[D]. 北京: 清华大学, 2012.

    Wu Yang. Theoretical and experiment study on intense beam high gain relativistic klystron amplifier[D]. Beijing: Tsinghua University, 2012
  • 加载中
图(5)
计量
  • 文章访问数:  966
  • HTML全文浏览量:  252
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-21
  • 修回日期:  2020-09-05
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回