留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体尾波加速器的发展和展望

陈民 刘峰 李博原 翁苏明 陈黎明 盛政明 张杰

陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001. doi: 10.11884/HPLPB202032.200174
引用本文: 陈民, 刘峰, 李博原, 等. 激光等离子体尾波加速器的发展和展望[J]. 强激光与粒子束, 2020, 32: 092001. doi: 10.11884/HPLPB202032.200174
Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001. doi: 10.11884/HPLPB202032.200174
Citation: Chen Min, Liu Feng, Li Boyuan, et al. Development and prospect of laser plasma wakefield accelerator[J]. High Power Laser and Particle Beams, 2020, 32: 092001. doi: 10.11884/HPLPB202032.200174

激光等离子体尾波加速器的发展和展望

doi: 10.11884/HPLPB202032.200174
基金项目: 国家自然科学基金项目(11991070,11721091,11774227)
详细信息
    作者简介:

    陈 民(1979—),男,博士,教授,从事激光等离子体物理研究;minchen@sjtu.edu.cn

  • 中图分类号: O539

Development and prospect of laser plasma wakefield accelerator

  • 摘要: 超强激光在气体等离子体中传输时可以激发出大振幅的电子等离子体尾波。激光等离子体尾波加速器是利用该尾波对带电粒子(特别是电子和正电子)进行加速的一种新型装置。由于其加速梯度相较于现有的常规加速器可以提升1000倍,为建造超紧凑型的加速器和辐射源奠定了基础,也为将来建造基于等离子体的超高能正负电子对撞机和自由电子激光装置提供了可能。对该新型加速器的原理、特点、发展历程,尤其是近十年来的主要进展和未来发展趋势及面临的主要挑战进行简要梳理和介绍。
  • 图  1  激光等离子体尾波加速原理示意图

    Figure  1.  Schematic of laser plasma wakefield acceleration

    The background color represents the distribution of plasma electrons with red ones showing the highest density and black ones showing the lowest density. The dashed arrows show the directions of the longitudinal and transverse electric fields.

    图  2  电子能谱

    Figure  2.  Energy spectra

    图  3  激光等离子体尾波的成像探测

    Figure  3.  Detected image of laser plasma wakefield (Figures are from reference [32] and Matlis N H,et al. Nat Phys,2006,2:749 and Zhang C,et al. Phys Rev Lett,2017,119:064801 and Zhang C,et al. Plasma Phys Controlled Fusion,2018,60:044013)

    图  4  用于激光尾波加速研究的实验装置

    Figure  4.  Laser and target systems for laser wakefield acceleration studies

  • [1] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Rev Mod Phys, 2009, 81: 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [2] 陈民, 盛政明, 马燕云, 等. 台面型电子加速器—激光尾波场加速器[J]. 物理, 2006, 35:1016-1027. (Chen Min, Sheng Zhengming, Ma Yanyun, et al. A tabletop accelerator—The laser wakefield accelerator[J]. Physics, 2006, 35: 1016-1027 doi: 10.3321/j.issn:0379-4148.2006.12.008
    [3] Tajima T, Dawson J M. Laser Electron Accelerator[J]. Phys Rev Lett, 1979, 43: 267-270. doi: 10.1103/PhysRevLett.43.267
    [4] 盛政明, 陈民, 翁苏明, 等. 超短超强激光驱动新型粒子加速器: 机遇和挑战[J]. 物理, 2018, 47(12):753-762. (Sheng Zhenming, Chen Min, Weng Suming, et al. Novel particle accelerators driven by ultrashort and ultraintense lasers: opportunities and challenges[J]. Phyisics, 2018, 47(12): 753-762 doi: 10.7693/wl20181201
    [5] 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32:045101. (Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101 doi: : 10.11884/HPLPB202032.190424
    [6] Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts[J]. IEEE Trans Plasma Sci, 1996, 24: 252-288. doi: 10.1109/27.509991
    [7] Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Rev Mod Phys, 2013, 85: 1-48. doi: 10.1103/RevModPhys.85.1
    [8] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Phys Today, 2009, 62: 44.
    [9] Schroeder C B, Esarey E, Geddes C G R, et al. Physics considerations for laser-plasma linear colliders[J]. Phys Rev ST-Acce Beams, 2010, 13: 101301. doi: 10.1103/PhysRevSTAB.13.101301
    [10] Maier A R, Meseck A, Reiche S, et al. Demonstration scheme for a laser-plasma-driven free-electron laser[J]. Phys Rev X, 2012, 2: 031019.
    [11] Nakajima K, Fisher D, Kawakubo T, et al. Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse[J]. Phys Rev Lett, 1995, 74: 4428-4431. doi: 10.1103/PhysRevLett.74.4428
    [12] Malka V, Fritzler S, Lefebvre E, et al. Electron Acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298: 1596-1600. doi: 10.1126/science.1076782
    [13] Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431: 535-538. doi: 10.1038/nature02939
    [14] Geddes C G R, Toth C, van Tilbrg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431: 538-541. doi: 10.1038/nature02900
    [15] Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431: 541-544. doi: 10.1038/nature02963
    [16] Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444: 737-739. doi: 10.1038/nature05393
    [17] Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Phys Rev Lett, 1997, 79: 2682. doi: 10.1103/PhysRevLett.79.2682
    [18] Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimeter-scale accelerator[J]. Nat Phys, 2006, 2: 696-699. doi: 10.1038/nphys418
    [19] Osterhoff J, Popp A, Major Z, et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell[J]. Phys Rev Lett, 2008, 101: 085002. doi: 10.1103/PhysRevLett.101.085002
    [20] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Phys Contro Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
    [21] Dawson J M. Particle simulation of plasmas[J]. Rev Mod Phys, 1983, 55: 403. doi: 10.1103/RevModPhys.55.403
    [22] Vay J L, Almgren A, Bell J, et al. Warp-X: A new exascale computing platform for beam-plasma simulations[J]. Nuclear Instruments & Methods in Physics Research Section A, 2018, 909: 476.
    [23] Fonseca R A, Silva L O, Tsung F S, et al. OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators?[J]. Lecture Notes in Computer Science, 2002, 2331: 342-251.
    [24] Yu P, Xu X, Decyk V K, et al. Modeling of laser wakefield acceleration in Lorentz boosted frame using EM-PIC code with spectral solver[J]. J Comput Phys, 2014, 266: 124-138. doi: 10.1016/j.jcp.2014.02.016
    [25] Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: The highly non-linear broken-wave regime[J]. Appl Phys B, 2002, 74: 355-361.
    [26] Gordienko S, Pukhov A. Scaling for ultrarelativistic laser plasmas and quasimonoenergetic electrons[J]. Phys Plasmas, 2005, 12: 043109. doi: 10.1063/1.1884126
    [27] Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Phys Rev Lett, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [28] Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Phys Rev ST-Acce Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
    [29] Chen M, Sheng Z M, Ma Y Y, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. J Appl Phys, 2006, 99: 056109. doi: 10.1063/1.2179194
    [30] Kalmykov S, Yi S A, Khudik V, et al. Electron self-injection and trapping into an evolving plasma bubble[J]. Phys Rev Lett, 2009, 103: 135004. doi: 10.1103/PhysRevLett.103.135004
    [31] Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Phys Rev Lett, 2009, 102: 065001. doi: 10.1103/PhysRevLett.102.065001
    [32] Downer M C, Zgadzaj R, Debus A, et al. Diagnostics for plasma-based electron accelerators[J]. Rev Mod Phys, 2018, 90: 035002. doi: 10.1103/RevModPhys.90.035002
    [33] Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Phys, 2009, 5: 826. doi: 10.1038/nphys1404
    [34] Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Phys, 2010, 6: 980. doi: 10.1038/nphys1789
    [35] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Phys, 2011, 7: 867. doi: 10.1038/nphys2090
    [36] Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6: 308. doi: 10.1038/nphoton.2012.82
    [37] Chen S, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons[J]. Phys Rev Lett, 2013, 110: 155003. doi: 10.1103/PhysRevLett.110.155003
    [38] Yan W, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nat Photon, 2017, 11: 514. doi: 10.1038/nphoton.2017.100
    [39] Fourmaux S, Corde S, Phuoc K T. Single shot phase contrast imaging using laser-produced Betatron X-ray beams[J]. Optics Letters, 2011, 36: 2426. doi: 10.1364/OL.36.002426
    [40] Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven Betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
    [41] Doepp A, Hehn L, Goetzfried J, et al. Quick X-ray microtomography using a laser-driven Betatron source[J]. Optica, 2018, 5: 199. doi: 10.1364/OPTICA.5.000199
    [42] Cole J M, Symes D R, Lopes N C, et al. High-resolution CT of a mouse embryo using a compact laser-driven X-ray Betatron source[J]. Proc Natl Acad Sci, 2018, 115: 6335-6340. doi: 10.1073/pnas.1802314115
    [43] Yabashi M, Tanaka H. The next ten years of X-ray science[J]. Nat Photon, 2017, 11: 12-14. doi: 10.1038/nphoton.2016.251
    [44] Guenot D, Gustas D, Vernier A, et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nat Photon, 2017, 11: 293-296. doi: 10.1038/nphoton.2017.46
    [45] Nie Z, Pai C H, Hua J, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure[J]. Nat Photon, 2018, 12: 489-494. doi: 10.1038/s41566-018-0190-8
    [46] Zhu X L, Weng S M, Chen M, et al. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas[J]. Light: Science & Applications, 2020, 9: 46.
    [47] Zhu X L, Chen M, Weng S M, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 μm[J]. Phys Rev Appl, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
    [48] Yu L L, Zhao Y, Qian L J, et al. Plasma optical modulators for intense lasers[J]. Nat Commun, 2016, 7: 11893. doi: 10.1038/ncomms11893
    [49] Sheng Z M, Mima K, Zhang J, et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Phys Rev Lett, 2005, 94: 095003. doi: 10.1103/PhysRevLett.94.095003
    [50] Liao G Q, Li Y T, Li C, et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses[J]. Phys Rev Lett, 2015, 114: 255001. doi: 10.1103/PhysRevLett.114.255001
    [51] Chang W W, Zhang L F, Shao F Q, et al. Laser plasma wave electron accelerators[J]. Acta Physica Sinica, 1991, 40: 182-189. doi: .orp
    [52] Chen L M, Kotaki H, Nakajima K, et al. Self-guiding of 100 TW femtosecond laser pulses in centimeter-scale underdense plasma[J]. Phys Plasmas, 2007, 14: 040703. doi: 10.1063/1.2720374
    [53] Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Phys Rev Lett, 2011, 107: 035001. doi: 10.1103/PhysRevLett.107.035001
    [54] Wang W T, Li W T, Liu J S, et al. high-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Phys Rev Lett, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
    [55] Zeng M, Chen M, Yu L L, et al. Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers[J]. Phys Rev Lett, 2015, 114: 084801. doi: 10.1103/PhysRevLett.114.084801
    [56] Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Sci Rep, 2015, 5: 14659. doi: 10.1038/srep14659
    [57] Li F Y, Sheng Z M, Liu Y, et al. Dense attosecond electron sheets from laser wakefields using an up-ramp density transition[J]. Phys Rev Lett, 2013, 110: 135002. doi: 10.1103/PhysRevLett.110.135002
    [58] Zhang C J, Hua J F, Wan Y, et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch[J]. Phys Rev Lett, 2017, 119: 064801. doi: 10.1103/PhysRevLett.119.064801
    [59] Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci, 2014, 111: 5825-5830. doi: 10.1073/pnas.1404336111
    [60] Vieira J, Mendonca J T. Nonlinear laser driven donut wakefields for positron and electron acceleration[J]. Phys Rev Lett, 2014, 112: 215001. doi: 10.1103/PhysRevLett.112.215001
    [61] Chen Y Y, He P L, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Phys Rev Lett, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
    [62] Wu Y T, Ji L L, Geng X S, et al. Spin filter for polarized electron acceleration in plasma wakefields[J]. Phys Rev Appl, 2020, 13: 044064. doi: 10.1103/PhysRevApplied.13.044064
    [63] Sahai A A, Tajima T, Shiltsev V D. Schemes of laser muon acceleration: Ultra-short, micron-scale beams[J]. International Journal of Modern Physics A, 2019, 34: 1943008. doi: 10.1142/S0217751X19430085
    [64] Gonsalves A J. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Phys Rev Lett, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
    [65] Steinke S, van Tilborg J, Benedetti C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530: 190-193. doi: 10.1038/nature16525
    [66] Luo J, Chen M, Wu W Y, et al. Multistage coupling of laser-wakefield accelerators with curved plasma channels[J]. Phys Rev Lett, 2018, 120: 154801. doi: 10.1103/PhysRevLett.120.154801
    [67] Nakajima K. Seamless multistage laser-plasma acceleration toward future high-energy colliders[J]. Light: Science & Applications, 2018, 7: 21.
    [68] Zigler A, Bolton M, Ferber Y, et al. Consolidating multiple femtosecond lasers in coupled curved plasma capillaries[J]. Appl Phys Lett, 2018, 113: 183505. doi: 10.1063/1.5046400
    [69] Xu X L, Hua J F, Wu Y P, et al. Physics of phase space matching for staging plasma and traditional accelerator components using longitudinally tailored plasma profiles[J]. Phys Rev Lett, 2016, 116: 124801. doi: 10.1103/PhysRevLett.116.124801
    [70] Chen M, Luo J, Li F Y, et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 2016, 5: e16015.
    [71] Doepp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
    [72] Walker P A, Alesini P D, Alexandrova A S, et al. Horizon 2020 EuPRAXIA design study[J]. Journal of Physics Conference Series, 2017, 874: 012029. doi: 10.1088/1742-6596/874/1/012029
  • 加载中
图(4)
计量
  • 文章访问数:  4160
  • HTML全文浏览量:  1146
  • PDF下载量:  591
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-07-26
  • 刊出日期:  2020-08-15

目录

    /

    返回文章
    返回