留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态激光中的光谱合成技术

邸鹏程 王小军 汪汝俊 李雪鹏 杨晶 宗楠

邸鹏程, 王小军, 汪汝俊, 等. 全固态激光中的光谱合成技术[J]. 强激光与粒子束, 2020, 32: 121008. doi: 10.11884/HPLPB202032.200191
引用本文: 邸鹏程, 王小军, 汪汝俊, 等. 全固态激光中的光谱合成技术[J]. 强激光与粒子束, 2020, 32: 121008. doi: 10.11884/HPLPB202032.200191
Di Pengcheng, Wang Xiaojun, Wang Rujun, et al. Spectral beam combing in solid-state lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121008. doi: 10.11884/HPLPB202032.200191
Citation: Di Pengcheng, Wang Xiaojun, Wang Rujun, et al. Spectral beam combing in solid-state lasers[J]. High Power Laser and Particle Beams, 2020, 32: 121008. doi: 10.11884/HPLPB202032.200191

全固态激光中的光谱合成技术

doi: 10.11884/HPLPB202032.200191
详细信息
    作者简介:

    邸鹏程(1993—),女,博士,从事高功率半导体激光及光谱合束研究;dipengcheng15@mails.ucas.edu.cn

    通讯作者:

    王小军(1973—),男,博士,从事激光物理、超高功率全固态激光技术、新型高亮度全固态激光技术研究等;wangxj@mail.ipc.ac.cn

  • 中图分类号: TN248.1

Spectral beam combing in solid-state lasers

  • 摘要: 对多种全固态激光中的光谱合成技术进行了探讨和研究,包括光纤激光、Yb:YAG板条激光和半导体激光。对于光纤激光,探讨了基于单个多层介质膜(MLD)光栅、一对MLD光栅、多个体布拉格光栅三种衍射光学元件的光谱合成技术中色散造成的光束质量退化问题,指出子束光谱线型的二阶矩全宽决定了光束质量的退化量,但所允许的光谱宽度又依赖于具体的技术选择途径。进而比较了三种光谱合成方案的优缺点。对于固体激光,实验演示了基于Yb:YAG晶体的板条激光实现光谱合成的原理可行性。通过设计一个基于MLD光栅的振荡器内的光谱合成装置,实现了7束子激光最高241 W的光谱合成输出,合成后光束质量β因子约4.1,表明大功率Yb:YAG板条激光具有通过光谱合束技术实现功率进一步提升的潜力。对于半导体激光,提出并设计了大模场外腔半导体激光+快轴光谱合成的技术。实验演示了9个1 mm宽LD芯片沿快轴方向的光谱合成,用β因子评价合成后的光束质量,在慢轴方向β≈6.3,在快轴方向β≈1.6,表明快轴光谱合成造成的光束质量退化是完全可控的。
  • 图  1  三种基于不同DOE元件的光纤激光光谱合成方案

    Figure  1.  Three schemes of spectral beam combining of fiber lasers based on different diffraction optics elements

    图  2  不同刻线密度T-VBG衍射效率随波长偏离和入射角偏离的变化

    Figure  2.  Efficiency of T-VBG diffraction with different line densities change with wavelength deviation and incident angle deviation

    图  3  不同刻线密度R-VBG衍射效率随波长偏离和入射角偏离的变化

    Figure  3.  Efficiency of R-VBG diffraction with different line densities changing with wavelength deviation and incident angle deviation

    图  4  Yb:YAG晶体的能级结构和室温下的吸收谱和受激谱[16]

    Figure  4.  Energy level structure and absorption and stimulated spectra of Yb:YAG crystal at room temperature[16]

    图  5  基于Yb:YAG板条的光谱合束实验方案

    Figure  5.  Experimental scheme of spectral beam combining based on Yb:YAG slab

    图  6  Yb:YAG板条增益模块结构示意图

    Figure  6.  Schematic diagram of Yb:YAG slab gain module

    图  7  合束功率随电源输入参数改变的曲线图

    Figure  7.  Curve of beam combining power changing with the input parameters of power supply

    图  8  合束后输出激光的光谱测量结果

    Figure  8.  Spectral measurement results of output laser after beam combining

    图  9  光谱合束后输出激光的近场与远场光斑分布

    Figure  9.  Near-field and far-field spot distribution of output laser after spectral beam combining

    图  10  半导体激光阵列外腔光谱合成原理图

    Figure  10.  Schematic diagram of external-cavity spectral beam combining of semiconductor laser array

    图  11  大模体积外腔半导体激光光谱合成原理图

    Figure  11.  Principle diagram of spectral beam combining of external-cavity semiconductor laser with large mode volume

    图  12  外腔半导体激光的物理过程示意图

    Figure  12.  Schematic diagram of physical process of external-cavity semiconductor laser

    图  13  大模场外腔半导体激光器的典型近场光斑和光束质量测量

    Figure  13.  The measurement of typical near-field spot and beam quality of large-mode external-cavity semiconductor laser

    图  14  快轴光谱合成的相关参数测量

    Figure  14.  Measurement of related parameters of fast-axis spectral beam combining

  • [1] Thielen P A, Ho J G, Burchman D A, et al. Two-dimensional diffractive coherent combining of 15 fiber amplifiers into a 600 W beam[J]. Optics Letters, 2012, 37(18): 3741-3743. doi: 10.1364/OL.37.003741
    [2] Bochove E J. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445. doi: 10.1109/3.998614
    [3] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 0901008.
    [4] Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55: 096101.
    [5] Liu Z J, Ma P G, Su R T, et al. High-power coherent beam polarization combination of fiber lasers: progress and prospect[J]. Journal of the Optical Society of America B, 2017, 34(3): A7-14. doi: 10.1364/JOSAB.34.0000A7
    [6] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proc of SPIE. 2016: 97300Y.
    [7] Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 337-343. doi: 10.1109/JSTQE.2008.2012266
    [8] Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120. doi: 10.1364/OL.36.003118
    [9] Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 344-353. doi: 10.1109/JSTQE.2009.2012438
    [10] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497. doi: 10.1109/JSTQE.2007.896568
    [11] 姜曼, 马鹏飞, 周朴, 等. 基于多层电介质光栅光谱合成的光束质量[J]. 物理学报, 2016, 65:104203. (Jiang Man, Ma Pengfei, Zhou Pu, et al. Beam quality in spectral beam combination based on the multi-layer dielectric grating[J]. Acta Physica Sinica, 2016, 65: 104203 doi: 10.7498/aps.65.104203
    [12] 周泰斗, 梁小宝, 赵磊, 等. 体布拉格光栅色散对衍射光束质量的影响[J]. 中国激光, 2017, 44:0201019. (Zhou Taidou, Liang Xiaobao, Zhao Lei, et al. Effect of dispersion of volume Bragg grating on the quality of diffraction beam[J]. Chinese Journal of Lasers, 2017, 44: 0201019 doi: 10.3788/CJL201744.0201019
    [13] Südmeyer T, Kränkel C, Baer C R E, et al. High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation[J]. Applied Physics B: Lasers and Optics, 2009, 97(2): 281-295. doi: 10.1007/s00340-009-3700-z
    [14] Wang Dan, Du Yinglei, Wu Yingchen, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb:YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
    [15] Guo Yangding, Peng Qinjun, Bo Yong, et al. 24.6 kW near diffraction limit quasi-continuous-wave Nd: YAG slab laser based on a stable–unstable hybrid cavity[J]. Optics Letters, 2020, 45(5): 1136-1139. doi: 10.1364/OL.385387
    [16] Dong Jun, Michael B, Mao Yanli, et al. Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet[J]. Journal of the Optical Society of America B, 2003, 20(9): 1975-1979. doi: 10.1364/JOSAB.20.001975
    [17] 王小军, 杨晶, 韩琳, 等. 一种多波长非相干光谱合束板条激光振荡器: CN201910193822.9[P]. 2019-05-24.

    Wang Xiaojun, Yang Jing, Han Lin, et al. A kind of multi-wavelength incoherent spectral beam-combining slab laser oscillator: CN201910193822.9[P]. 2019-05-24
    [18] Daneu V, Sanchez A, Fan e T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407. doi: 10.1364/OL.25.000405
    [19] Huang R K, Chann B, Burgess J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[C]//Proc of SPIE. 2012: 824102.
    [20] Hecht J. Beam combining cranks up the power[J]. Laser Focus World, 2012, 48(6): 50-53.
    [21] Xiao Y, Brunet F, Kanskar M, et al. 1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks[J]. Optics Express, 2012, 20(3): 3296-3301. doi: 10.1364/OE.20.003296
    [22] 王小军, 宗楠, 彭钦军, 等. 一种高功率高光束质量外腔半导体激光器: CN201811197771.9[P]. 2019-11-15.

    Wang Xiaojun, Zong Nan, Peng Qinjun, et al. A high power and high beam quality external cavity semiconductor laser: CN201811197771.9[P]. 2019-11-15
  • 加载中
图(14)
计量
  • 文章访问数:  1092
  • HTML全文浏览量:  237
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-10-29
  • 刊出日期:  2020-11-19

目录

    /

    返回文章
    返回