留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段50 MW速调管的研制

储开荣 盛兴 李冬凤 窦钺 钟勇 张士桥

储开荣, 盛兴, 李冬凤, 等. X波段50 MW速调管的研制[J]. 强激光与粒子束, 2020, 32: 103012. doi: 10.11884/HPLPB202032.200211
引用本文: 储开荣, 盛兴, 李冬凤, 等. X波段50 MW速调管的研制[J]. 强激光与粒子束, 2020, 32: 103012. doi: 10.11884/HPLPB202032.200211
Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012. doi: 10.11884/HPLPB202032.200211
Citation: Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012. doi: 10.11884/HPLPB202032.200211

X波段50 MW速调管的研制

doi: 10.11884/HPLPB202032.200211
基金项目: 十二五“核高基”重大专项项目(2015ZX01010201-002)
详细信息
    作者简介:

    储开荣(1982—),男,硕士,高级工程师,物理电子学专业,从事微波管研制;njckr@126.com

  • 中图分类号: TN122

Development of X-band 50MW klystron

  • 摘要: 介绍了一种X波段高峰值功率速调管的研制方案,目前该管在X波段已经实现脉冲输出功率50 MW,效率57%,脉宽达到3.6 μs。通过COM法、圆波导行波窗、防晕环和陶瓷覆膜等关键技术的应用,解决了高效率、高峰值功率容量和高可靠性等难题。尤其是采用COM法优化电子注群聚,与采用二次谐波群聚法相比,在同样的高频管体长度下,可将互作用效率进一步提高10%左右。产品研制成功,将国内X波段速调管的功率水平由3 MW提升至50 MW,产品性能已达到国际先进水平。
  • 图  1  电子枪电场分布

    Figure  1.  Electric field distribution of electron gun

    图  2  无防晕环仿真结果

    Figure  2.  Simulation results without anticorona ring

    图  3  有防晕环仿真结果

    Figure  3.  Simulation results with anticorona ring

    图  4  电子注聚焦模拟

    Figure  4.  Simulation of electron beam focusing

    图  5  长漂移段方案电子相位和电流谐波分量沿轴向的变化

    Figure  5.  Electron phase and current harmonic component change along axial direction of long drift section scheme

    图  6  COM法仿真结果

    Figure  6.  Simulation results of COM method

    图  7  盘荷波导行波输出段色散曲线

    Figure  7.  Dispersion curve of the disc-loaded waveguide output section

    图  8  工作模式电场分布

    Figure  8.  Electric field distribution of operating mode

    图  9  圆波导TE01驻波窗仿真结果

    Figure  9.  Simulation results of circular waveguide TE01 standing-wave window

    图  10  圆波导TE01行波窗仿真结果

    Figure  10.  Simulation results of circular waveguide TE01 travelling-wave window

    图  11  花瓣形模式变换器结构

    Figure  11.  Structure of petal-shaped mode convertor

    图  12  收集极温度分布

    Figure  12.  Temperature distribution of collector

    图  13  排气中的样管

    Figure  13.  Prototype in exhausting process

    图  14  测试系统示意图

    Figure  14.  Schematic diagram of test system

    表  1  样管测试结果

    Table  1.   Test results of prototype

    frequency/GHzpeak output power/MWduty cycle/%RF pulse width/μsgain/dBefficiency/%
    specification11.424≥500.0181.5≥50≥40
    tested value11.42450.60.0183.650.957.6
    −3 dB bandwidth/MHzbeam voltage/kVbeam current/Amodulation mannerfocusing manner
    specification≥30450~470≤250cathode modulationsolenoid focusing system
    tested value36457192cathode modulationsolenoid focusing system
    下载: 导出CSV
  • [1] Syratchev I. Prospects for high-efficiency klystrons[C]// EnEfficient RF Sources Workshop. 2014.
    [2] Sprehn D, Caryotakis G, Haase A, et al. Current status of the next linear collider X-band klystron development program[C]//9th European Particle Accelerator Conference. 2004
    [3] Yano A, Ohkubo Y. Design consideration to PPM klystron for industrial linac[C]//Proceedings of LINAC. 2002
    [4] Begum R, Balkcum A, Hunter T, et al. Evaluation of a 4-gap extended interaction output circuit for a 50MW X-band klystron[C]//IEEE International Vacuum Electronics Conference. 2014.
    [5] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [6] 刘联保、莫纯昌. 电子工业生产技术手册(4): 电真空器件卷[M]. 北京: 国防工业出版社, 1990.

    Liu Lianbao, Mo Chunchang. Production technology manual for electronic industry[M]. Beijing: National Defense Industry Press, 1990
    [7] 周祖圣, 田双敏, 董东. 高功率速调管聚焦磁场设计研究[J]. 强激光与粒子束, 2006, 18(8):1337-1340. (Zhou Zusheng, Tian Shuangmin, Dong Dong. Design of focusing magnet for high power klystron[J]. High Power Laser and Particle Beams, 2006, 18(8): 1337-1340
    [8] Guzilov I A. BAC method of increasing the efficiency in klystrons[C]//Tenth IEEE International Vacuum Electron Sources Conference. 2014.
    [9] Marrelli C. High efficiency klystron design[C]//RF CLIC Meeting. 2014.
    [10] Jensen A, Fazio M, Haase A, et al. Retrofitting the 5045 klystron for higher efficiency[C]//IEEE International Vacuum Electronics Conference. 2015.
    [11] Kowalczyk R, Haase A, Jongewaard E, et al. Test of a BAC klystron[C]//IEEE International Vacuum Electronics Conference. 2017.
    [12] Igor G, Anatoly S, Oleg M, et al. Comparison of 6 MW S-band pulsed BAC MBK with the existing SBKs[C]//IEEE International Vacuum Electronics Conference. 2017.
    [13] 钟勇, 丁海兵, 王树忠, 等. Ku波段扩展互作用速调管设计[J]. 强激光与粒子束, 2011, 23(11):3055-3058. (Zhong Yong, Ding Haibing, Wang Shuzhong, et al. Design of Ku-band extended interaction klystron[J]. High Power Laser and Particle Beams, 2011, 23(11): 3055-3058 doi: 10.3788/HPLPB20112311.3055
    [14] Fowkes W R, Callin R S, Tudzinski M S. Component development for X-band above 100 MW[C]//Particle Accelerator Conference. 1991.
    [15] Fowkes W R. Large diameter reduced field TE01 travelling wave window for X-band[C]//Particle Accelerator Conference. 1999.
    [16] 王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009.

    Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009)
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1423
  • HTML全文浏览量:  360
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-09-23
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回