留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水分子在氢化锂表面的吸附行为

刘城 雷洁红

刘城, 雷洁红. 水分子在氢化锂表面的吸附行为[J]. 强激光与粒子束, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217
引用本文: 刘城, 雷洁红. 水分子在氢化锂表面的吸附行为[J]. 强激光与粒子束, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217
Liu Cheng, Lei Jiehong. Adsorption behavior of water molecules on the surface of lithium hydride[J]. High Power Laser and Particle Beams, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217
Citation: Liu Cheng, Lei Jiehong. Adsorption behavior of water molecules on the surface of lithium hydride[J]. High Power Laser and Particle Beams, 2020, 32: 102001. doi: 10.11884/HPLPB202032.200217

水分子在氢化锂表面的吸附行为

doi: 10.11884/HPLPB202032.200217
基金项目: 国家自然科学基金项目(11805157);四川省科技厅应用基础面上项目(2017JY0146);西华师范大学科研创新团队项目(CXTD2016-2);西华师范大学英才科研基金项目(CXTD2017-10)
详细信息
    作者简介:

    刘 城(1994—),男,研究生,从事高分子吸附剂相关研究;liucheng@stu.cwnu.edu.cn

    通讯作者:

    雷洁红(1980—),女,博士,教授,从事新能源纳米材料相关领域研究;jiehonglei@126.com

  • 中图分类号: O485

Adsorption behavior of water molecules on the surface of lithium hydride

  • 摘要: 运用理论分析方法计算研究了水分子在氢化锂表面的吸附行为,分析了氢化锂表面改性对其疏水性能的影响。结果表明,在LiH-111面和LiH-100面上构建槽结构、柱状结构后,水分子在其上的吸附力比完整表面更强,说明表面微结构的引入的确改变了势能分布。壁相交处存在势能叠加,加强了吸附水分子的能力,但是没有引起表面的亲水性能变化。水分子可以稳定的吸附在完美的LiH(001)表面,其解离能垒仅为0.386 eV,这一解离反应在室温下完全可以进行。水分子极易在具有结构缺陷的LiH表面解离,这是LiH在一定湿度的空气和水环境中极易分解的根本原因。
  • 图  1  (110)表面

    Figure  1.  (110) surface

    图  2  柱状结构示意图

    Figure  2.  Schematic diagram of surface columns

    图  3  槽结构示意图

    Figure  3.  Schematic diagram of surface grooves

    图  4  示意图

    Figure  4.  Schematic of initial water molecules

    图  5  LiH-100面与水的相互作用

    Figure  5.  Interaction between LiH-100 surface and water

    图  6  LiH-111面与水的相互作用

    Figure  6.  Interaction between LiH-111 surface and water

    图  7  LiH-100面槽结构与水的相互作用

    Figure  7.  Interaction between LiH-100 surface grooves and water

    图  8  LiH-100面柱结构与水的相互作用

    Figure  8.  Interaction between LiH-100 surface columns and water

    图  9  LiH-111面槽结构与水的相互作用

    Figure  9.  Interaction between LiH-111 surface grooves and water

    图  10  LiH-111面柱结构与水的相互作用

    Figure  10.  Interaction between LiH-111 surface columns and water

    图  11  LiH-001晶面

    Figure  11.  LiH-001 crystal plane

    图  12  水分子在完美的LiH(001)表面的吸附行为

    Figure  12.  Adsorption behavior of water molecules on a perfect LiH (001) surface

    图  13  水分子在完美的LiH(001)表面解离反应的过渡态结构

    Figure  13.  Transition state structure of the dissociation reaction of water molecules on the perfect LiH (001) surface

    图  14  解离过程的最小能量路径

    Figure  14.  Minimum energy path of the dissociation process

    图  15  水分子在带有一个负电荷的氢空位的LiH(001)表面的吸附行为

    Figure  15.  Adsorption behavior of water molecules on LiH (001) surface with a negatively charged hydrogen vacancy

    图  16  水分子在带有一个负电荷的氢空位的LiH(001)表面的解离路径

    Figure  16.  Dissociation path of water molecules on LiH (001) surface with a negatively charged hydrogen vacancy

    图  17  水分子在带有一个正电荷的氢空位的LiH(001)表面的吸附行为

    Figure  17.  Adsorption behavior of water molecules on LiH (001) surface with a positively charged hydrogen vacancy

    图  18  水分子在带有一个正电荷的氢空位的LiH(001)表面的解离路径

    Figure  18.  Dissociation path of water molecules on LiH (001) surface with a positively charged hydrogen vacancy

    图  19  水分子在表面存在Li-H双空位时的LiH(001)表面的吸附行为

    Figure  19.  Adsorption behavior of LiH (001) surface when water molecules have Li-H double vacancies on the surface

    图  20  水分子在表面存在Li-H双空位时的LiH(001)表面的解离路径

    Figure  20.  Dissociation path of LiH (001) surface when water molecules have Li-H double vacancies on the surface

    图  21  水分子在LiH(001)表面台阶处的吸附过程

    Figure  21.  Adsorption process of water molecules on the LiH (001) surface steps

    图  22  水分子在LiH(001)表面台阶处的解离路径

    Figure  22.  Dissociation path of water molecules at the steps of LiH (001) surface

    图  23  水分子在存在缺陷的LiH(001)表面的吸附过程

    Figure  23.  Adsorption process of water molecules on a defective LiH (001) surface

    图  24  水分子在完美的LiH(001)表面的吸附过程

    Figure  24.  Adsorption process of water molecules on a perfect LiH (001) surface

  • [1] Haertling C, Hanrahan R J, Smith R. A literature review of reactions and kinetics of lithium hydride hydrolysis[J]. Journal of Nuclear Materials, 2006, 349(1/2): 195-233.
    [2] Chen P, Xiong Z, Luo J, et al. Interaction between lithium amide and lithium hydride[J]. Journal of Physical Chemistry B, 2003, 107(39): 10967-10970. doi: 10.1021/jp034149j
    [3] Kojima Y, Kawai Y, Kimbara M, et al. Hydrogen generation by hydrolysis reaction of lithium borohydride[J]. International Journal of Hydrogen Energy, 2004, 29(12): 1213-1217. doi: 10.1016/j.ijhydene.2003.12.009
    [4] Stober, K. J, Cantwell B J, Otaibi R A. Hypergolic ignition of lithium–aluminum–hydride-doped paraffin wax and nitric acid[J]. Journal of Propulsion and Power, 2020, 36(3): 435-445. doi: 10.2514/1.B37425
    [5] Houk K N, Rondan N G, Schleyer P V, et al. Transition structures for additions of lithium hydride and methyllithium to ethylene and acetylene[J]. Journal of the American Chemical Society, 1985, 107(9): 2821-2823. doi: 10.1021/ja00295a053
    [6] Kang X, Fang Z, Kong L, et al. Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material[J]. Advanced Materials, 2008, 20(14): 2756-2759. doi: 10.1002/adma.200702958
    [7] Weber G, Sciora E, Guichard J, et al. New insight on the lithium hydride–water vapor reaction system[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22557-22567. doi: 10.1016/j.ijhydene.2018.10.089
    [8] Dovesi R, Ermondi C, Ferrero E, et al. Hartree-Fock study of lithium hydride with the use of a polarizable basis set[J]. Physical Review B, 1984, 29(6): 3591-3600. doi: 10.1103/PhysRevB.29.3591
    [9] 胡玉坤, 丁静, 彭晓峰, 等. 锂离子交换ZSM-5型分子筛中水分子吸附特性的分子模拟[J]. 硅酸盐学报, 2007(9):1247-1252. (Hu Yukun, Ding Jing, Peng Xiaofeng, et al. Molecular simultion of characteristics for water adsorption on ZSM-5 type zeolite doped by lithium ion[J]. Journal of the Chinese Ceramic Society, 2007(9): 1247-1252 doi: 10.3321/j.issn:0454-5648.2007.09.022
    [10] 吕岩, 王涛, 马卫华. 基于密度泛函理论研究水在磷酸锂(100)表面的吸附[J]. 广州化工, 2016, 44(9):1-4. (Lü Yan, Wang Tao, Ma Weihua. Adsorption of water on Li3PO4 (100) surface from density functional theory[J]. Guangzhou Chemical Industry, 2016, 44(9): 1-4 doi: 10.3969/j.issn.1001-9677.2016.09.001
    [11] 王林林, 朱灵燕, 刘跃龙, 等. 混合捕收剂在锂云母表面吸附行为的分子动力学模拟研究[J]. 有色金属(选矿部分), 2019(2):108-114. (Wang Linlin, Zhu Lingyan, Liu Yuelong, et al. Molecular dynamics simulation study on adsorption behavior of mixed collector on lithium mica surface[J]. Nonferrous Metals Mineral Processing Section, 2019(2): 108-114
    [12] 李璐, 李奕, 郭欣, 等. 水在HfO2(111)和(110)表面的吸附与解离[J]. 物理化学学报, 2013(5):61-69. (Li Lu, Li Yi, Guo Xin, et al. Adsorption and dissociation of water on HfO2(111) and (110) surfaces[J]. Acta Physico-Chimica Sinica, 2013(5): 61-69
    [13] 刘够生, 宋兴福, 汪瑾, 等. 水分子在MoO3原子簇模型表面吸附的密度泛函研究[J]. 分子催化, 2005, 19(2):136-140. (Liu Gousheng, Song Xingfu, Wang Jin, et al. Density functional theoretical study of water molecular adsorption on the surface of MoO3 with the cluster model[J]. Journal of Molecular Catalysis, 2005, 19(2): 136-140 doi: 10.3969/j.issn.1001-3555.2005.02.012
    [14] 杜佳, 闵凡飞, 张明旭, 等. 水分子在铵伊利石表面吸附的密度泛函研究[J]. 中国矿业大学学报, 2017, 46(6):1349-1356. (Du Jia, Min Fanfei, Zhang Mingxu, et al. Mechanism of H2O adsorption on ammonium-illite surface based on density functional theory[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1349-1356
    [15] 薛严冰, 唐祯安, 孙伟民. 水分子在SnO2(110)表面吸附特性的密度泛函计算[J]. 大连交通大学学报, 2012, 33(5):93-96. (Xue Yanbing, Tang Zhen’an, Sun Weimin. Density functional calculation of properties of water molecule adsorption on SnO2 (110) surface[J]. Journal of Dalian Jiaotong University, 2012, 33(5): 93-96 doi: 10.3969/j.issn.1673-9590.2012.05.022
    [16] 张瑶, 李照兵, 张鑫, 等. 水分子在Bi(111)表面上的吸附和自组装[J]. 中国科学(化学), 2016, 46(4):389-393. (Zhang Yao, Li Zhaobing, Zhang Xin, et al. Adsorption and self-assembly of water molecules on Bi (111)[J]. Scientia Sinica(Chimica), 2016, 46(4): 389-393
    [17] 付纯鹤, 卢辉丽, 孙少瑞. 密度泛函理论方法研究6H-SiC(0001)表面对氧分子和水分子的吸附[J]. 化学物理学报, 2019(4):451-456. (Fu Chunhe, Lu Huili, Sun Shaorui. Density functional theory study for adsorption of oxygen and water molecules on 6H-SiC (0001) surface[J]. Chinese Journal of Chemical Physics, 2019(4): 451-456
    [18] 赵红华, 江舒棋, 葛源源, 等. 不同阳离子基蒙脱石吸附水分子的分子动力学模拟分析[J]. 中国科学:技术科学, 2019, 49(6):703-715. (Zhao Honghua, Jiang Shuqi, Ge Yuanyuan, et al. Molecular dynamics simulation of water molecules adsorption by different cations based montmorillonite[J]. Scientia Sinica(Technologica), 2019, 49(6): 703-715
    [19] Oshikiri M, Boero M. Water molecule adsorption properties on the BiVO4 (100) surface[J]. Journal of Physical Chemistry B, 2006, 110(18): 9188-9194. doi: 10.1021/jp0555100
    [20] Kohtani M, Breaux G A, Jarrold M F, et al. Water molecule adsorption on protonated dipeptides[J]. Journal of the American Chemical Society, 2004, 126(4): 1206-1213. doi: 10.1021/ja0359557
    [21] Rangel E, Ruizchavarria G, Magana L F, et al. Water molecule adsorption on a titanium–graphene system with high metal coverage[J]. Carbon, 2009, 47(2): 531-533. doi: 10.1016/j.carbon.2008.11.037
    [22] Pang Z Q, Zhang Y, Rong Z, et al. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy[J]. Acta Physica Sinica, 2016, 65: 226801.
    [23] Wungu T D, Agusta M K, Saputro A G, et al. First principles calculation on the adsorption of water on lithium-montmorillonite (Li-MMT)[J]. Phys Condens Matter, 2012, 24: 475506. doi: 10.1088/0953-8984/24/47/475506
    [24] Wang C, Zhang K, Song P, et al. First-principles study of nitrogen adsorption and dissociation on PuH2 (111) surface[J]. Molecules, 2020, 25(8): 1891-1903. doi: 10.3390/molecules25081891
  • 加载中
图(24)
计量
  • 文章访问数:  1554
  • HTML全文浏览量:  326
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-09-03
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回