留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X波段高功率相对论速调管放大器研究

张军 张威 巨金川 周云霄

张军, 张威, 巨金川, 等. X波段高功率相对论速调管放大器研究[J]. 强激光与粒子束, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228
引用本文: 张军, 张威, 巨金川, 等. X波段高功率相对论速调管放大器研究[J]. 强激光与粒子束, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228
Zhang Jun, Zhang Wei, Ju Jinchuan, et al. Research of X-band high power triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228
Citation: Zhang Jun, Zhang Wei, Ju Jinchuan, et al. Research of X-band high power triaxial klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103001. doi: 10.11884/HPLPB202032.200228

X波段高功率相对论速调管放大器研究

doi: 10.11884/HPLPB202032.200228
基金项目: 国家自然科学基金面上项目(61771481);国防科技大学科研计划项目(ZK18-03-04);湖湘青年英才支持计划项目(2018RS3082)
详细信息
    通讯作者:

    张 军(1977—),男,博士,研究员,主要从事高功率微波技术研究;zhangjun@nudt.edu.cn

  • 中图分类号: TN125

Research of X-band high power triaxial klystron amplifier

  • 摘要: 为进一步提高X波段相对论速调管放大器的输出功率,采用理论分析与粒子模拟的方法对双群聚腔级联式相对论速调管放大器进行了研究。分析了提高注入腔对注入微波吸收效率的方法,分析了群聚腔调制能力与腔体模式、Q值等参数的关系,分析了输出腔提取效率与Q值的关系。在三维粒子仿真中,设计了模式反射器抑制TEM模式泄露与杂模振荡,得到了功率超过2.5 GW,频谱纯净,频率锁定为8.40 GHz,输出输入微波相位差稳定,抖动不超过2°的高功率微波输出。
  • 图  1  典型的TKA结构示意图

    Figure  1.  Schematic of the designed TKA

    图  2  不同QE时注入腔对注入微波的吸收效率

    Figure  2.  Absorption rate of the input cavity with different QE

    图  3  不同QE时电子束通过注入腔后基波电流调制深度

    Figure  3.  Normalized modulation current with different QE

    图  4  两种模式对应的耦合系数与直流渡越角的关系

    Figure  4.  Relationship between M and ${\theta _{\rm{d}}}$ of two modes

    图  5  第一腔不同模式时的基波电流调制

    Figure  5.  Fundamental harmonic current distributions with different mode in buncher I

    图  6  第二腔不同模式时的基波电流调制

    Figure  6.  Fundamental harmonic current distributions with different mode in buncher II

    图  7  不同Q值第一群聚腔对应的间隙电压

    Figure  7.  Gap voltage in buncher Ⅰ with different Q

    图  8  不同Q值第二群聚腔对应的间隙电压

    Figure  8.  Gap voltage in buncher Ⅱ with different Q

    图  9  提取腔间隙电压、输出功率与外部Q值的关系

    Figure  9.  Gap voltage and output power with different Q

    图  10  QE=17时提取腔的输出功率

    Figure  10.  Output power when QE=17

    图  11  电子束与提取腔互作用时电功率随轴向位置变化

    Figure  11.  Electron power vary along z axis in the output cavity

    图  12  QE=17时提取腔轴向场分布

    Figure  12.  E-field distribution in the output cavity when QE=17

    图  13  器件产生非旋转对称模式时的输出微波功率

    Figure  13.  Output power of the designed TKA

    图  14  器件产生非旋转对称模式时提取腔间隙的电压频谱

    Figure  14.  Spectrum of the output microwave voltage

    图  15  第一反射器的传输曲线

    Figure  15.  Transmission curve of the reflector Ⅰ

    图  16  第二反射器的传输曲线

    Figure  16.  Transmission curve of the reflector Ⅱ

    图  17  电子束基波调制电流和电子束平均功率

    Figure  17.  Fundamental harmonic current distributions and electron beam power flow

    图  18  TKA整管8.40 GHz反向功率流

    Figure  18.  Negative flowing power in the TKA

    图  19  TKA输出微波功率

    Figure  19.  Envelope curve of the output power

    图  20  TKA输出端口电压频谱

    Figure  20.  Spectrum of the output microwave voltage

    图  21  TKA输出微波时频曲线

    Figure  21.  Frequency of the output microwave with different time

    图  22  TKA输出输入微波相位差

    Figure  22.  Phase difference between input and output microwave with different time

  • [1] Varia K R. Power combining in a single multiple-diode cavity[J]. IEEE MTT-S, Int Microwave Symp Dig, 1978: 344-345.
    [2] Ma Y, Sun C. 1-W millimeter-wave Gunn diode combiner[J]. IEEE Trans Microwave Theory and Techniques, 1980, 28(12): 1460-1463. doi: 10.1109/TMTT.1980.1130267
    [3] 石成才, 刘大刚, 蒙林. 互耦相对论返波管等同锁相和功率放大的粒子模拟[J]. 强激光与粒子束, 2012, 24(1):129-132. (Shi Chengcai, Liu Dagang, Meng Lin. Particle simulation of peer-to-peer locking and power amplification for mutually coupled relativistic BWOs[J]. High Power Laser and Particle Beams, 2012, 24(1): 129-132 doi: 10.3788/HPLPB20122401.0129
    [4] Friedman M, Krall J, Lau Y Y, et al. Externally modulated intense relativistic electron beams[J]. J Appl Phys, 1988, 64(7): 3353-3379. doi: 10.1063/1.341521
    [5] Friedman M, Fernsler R, Slinker S, et al. Efficient conversion of the energy of intense relativistic electron beams into RF waves[J]. Phys Rev Lett, 1995, 75(6): 1214-1217. doi: 10.1103/PhysRevLett.75.1214
    [6] 吴涛, 黄华, 王淦平, 等. 扇形多注强流相对论电子束的产生与传输研究[J]. 物理学报, 2012, 61:184218. (Wu Tao, Huang Hua, Wang Ganping, et al. The generation and transmission research of the fan-shaped multi-beam intense relativistic electron beams[J]. Acta Physica Sinica, 2012, 61: 184218
    [7] 刘振帮, 金晓, 黄华, 等. 强流多注相对论速调管中电子束特性的初步研究[J]. 物理学报, 2012, 61:248401. (Liu Zhenbang, Jin Xiao, Huang Hua. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron[J]. Acta Physica Sinica, 2012, 61: 248401
    [8] 刘振帮, 金晓, 黄华, 等. X波段长脉冲同轴多注相对论速调管放大器的分析与设计[J]. 物理学报, 2012, 61:128401. (Liu Zhenbang, Jin Xiao, Huang Hua. Analysis and design of X-band coaxial multi-beam relativistic klystron amplifier[J]. Acta Physica Sinica, 2012, 61: 128401
    [9] Qi Zumin, Zhang Jun, Zhong Huihuang, et al. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier[J]. Phys Plasmas, 2014, 21: 013107. doi: 10.1063/1.4862557
    [10] Qi Zumin, Zhang Jun, Zhong Huihuang, et al. An improved suppression method of the transverse-electromagnetic mode leakage with two reflectors in the triaxial klystron amplifier[J]. Phys Plasmas, 2014, 21: 073103. doi: 10.1063/1.4889901
    [11] Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [12] Carlsten B E. A self consistent numerical analysis of klystrons using large signal beam wave interaction simulations[D]. Stanford: Stanford University, 1985.
    [13] Zhang Zehai, Shu Ting, Zhang Jun, et al. Matching conditions of the on the cavity absorbing property under intense beam loading[J]. IEEE Trans Plasma Science, 2012, 40(11): 3121-3126. doi: 10.1109/TPS.2012.2212285
    [14] Pasour J, Smithe D, Ludeking L. X-band triaxial klystron[C]//6th Workshop of High Energy Density and High Power RF. 2003: 141-150.
    [15] Zhu Jianhui, Xie Yongjie, Zhou Xiaofeng, et al. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition[J]. Phys Plasmas, 2016, 23: 123103. doi: 10.1063/1.4969079
    [16] Qi Zumin, Zhang Ju, Zhang Qiang, et al. Design and experimental demonstration of a long-pulse, X-band triaxial klystron amplifier with an asymmetric input cavity[J]. IEEE Electron Device Lett, 2016, 37(6): 782-784.
  • 加载中
图(22)
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  253
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2020-09-09
  • 刊出日期:  2020-09-29

目录

    /

    返回文章
    返回